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Casimir operator Casimir-Operator, 55
character Charakter, 28
Clebsch-Gordan coefficients Clebsch-Gordan Koeffizienten, 72
closure Abgeschlossenheit, 2
completely reducible vollständig reduzibel, 25
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Chapter 1

Groups

The easiest way to understand the concept of a group is to consider a simple
example: the group C4. It consists of the numbers i,−1,−i, 1, which have
the property that:

i1 = i i2 = −1 i3 = −i i4 = 1 .

Further powers of i will repeat this cycle, so i5 = i, and so on. In fact, this
group is closed ; multiplying any of these two numbers will always give us
another one of these numbers. This is the kind of structure that separates
groups from ordinary sets.

1.1 Definition

Formally, a set G = {a, b, c, . . .} forms a group G if the following three
conditions are satisfied:

• The set is accompanied by some operation · called group multiplica-
tion, which is associative: a · (b · c) = (a · b) · c.

• A special element 1 ∈ G, called the identity, has the property a · 1 =
1 · a = a for all a ∈ G.

• Each a in G has a unique inverse a−1 which must also be in G and
satisfy a · a−1 = a−1 · a = 1.

The group C4 mentioned above satisfies these three conditions with standard
numeric multiplication as group multiplication, and with the number 1 as
the identity element 1. The inverses are:

1
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i−1 = −i −1−1 = 1 −i−1 = i

Group multiplication isn’t restricted to regular numeric multiplication. For
instance, the set of all integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } forms a group
under standard algebraic addition +, and with the number 0 as the iden-
tity element 1. Every element has a unique inverse in Z under addition;
for instance, 3−1 = −3. Notice that numeric multiplication wouldn’t work,
because 1

3
is not in Z.

The symbol −1 does not always mean “raise to the -1th power,” rather it
means “find the inverse under the specified group multiplication.” The same
applies for positive superscripts, which mean “apply the specified group mul-
tiplication n times.” For instance, under addition, 42 = 8.
A group is called abelian if the group multiplication · is commutative:
a · b = b · a. C4 is clearly abelian, since all numbers commute under multipli-
cation. An example of a non-abelian group is a set of matrices under matrix
multiplication.

Multiplication Tables

The order of a group is the number of elements it contains. For example,
C4 is of order 4, and Z is of infinite order.
There are two kinds of groups of infinite order: countable and continuous.
The first kind has elements that can be counted, much like the integers
Z. The second kind cannot be counted, much like the real numbers R.
Continuous groups will lead us to the famous Lie Groups, which we will
discuss later.
Groups of finite order can be summarized in convenient multiplication ta-
bles, which demonstrate how the group multiplication works on its elements.
The following is a multiplication table for C4:

C4 1 a a2 a3

1 1 a a2 a3

a a a2 a3
1

a2 a2 a3
1 a

a3 a3
1 a a2

Figure 1.1: Multiplication Table for C4

We use a more general notation, where we use a instead of i.
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Notice how each entry in the multiplication table is also a member of the
group. This is true for all groups, and it illustrates their closure: if a and b
are in G, then so is a · b. This is often referred to as a fourth defining prop-
erty of a group. (It’s technically superfluous, since this property is already
included in the mathematical definition of an operation. However, it’s an
easy property to overlook, so we mention it for emphasis.)
Notice also how 1 appears exactly once in every row and column. This is a
consequence of the fact that every group element must have a unique inverse
belonging to the group. Because of this, every group element appears only
once in every row and column of a multiplication table. This kind of structure
is called a Latin square.
Notice also that the multiplication table for C4 can be reflected along its
main diagonal. This indicates that the group is abelian, that is, the order of
multiplication doesn’t matter: a · b = b · a

C4 1 a a2 a3

1 1 a a2 a3

a · a2 a3
1

a2 · · 1 a
a3 · · · a2

Figure 1.2: We know what goes in place of the dots, because the group is
abelian.

Cyclic Groups

So far, we have covered many important properties of groups. But why
should we even care about them? Why are they useful?
The short answer is: symmetry. Group theory provides us with a detailed,
mathematical description of symmetry. Several problems in modern physics
exhibit certain kinds of symmetries we’d like to take advantage of. Some
are easy to grasp, whereas some are not so easily apparent. For instance,
we will see at the end of this script that the hydrogen atom corresponds to
the symmetry group of four -dimensional rotations. This is kind of symmetry
may be impossible to visualize, but it’s still possible to study using group
theory.
Although we’re not ready to tackle a four-dimensional rotation group yet,
we’ll start out with a simple example which can be readily visualized. The
cyclic group Cn is defined to be the group of order n with the following
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structure:

Cn = {1, a, a2, a3, . . . , an−1} an = 1 .

Notice that the entire group is determined by a single element a; we call
this element the generator of the group. In order for a to generate a cyclic
group, it must satisfy an = 1 for some n. We are already familiar with the
group C4, which is the cyclic group of order 4. In fact, the name cyclic group
lends its name from the rows and columns of its multiplication table, which
are just cyclic permutations of each other.
This seemingly formal mathematical description of the cyclic group harbors
geometrical significance: Cn corresponds to the symmetry of an n-sided poly-
gon. (Actually, the cyclic group corresponds to the symmetry of an oriented
polygon. This will soon become clear.)
In order to investigate this claim, let’s consider the group C4. We should
expect C4 to somehow relate to a 4-sided polygon, i.e. a square.
Let us consider an actual square, and rotate it as in Figure 1.3. We would
certainly notice a rotation by a small angle, say 5◦. However, if we were to
rotate it by exactly 90◦, we wouldn’t be able to distinguish it before or after
rotation. We can again rotate the square to 180◦, 270◦, and back to 360◦,
and the square will still appear unchanged.

Figure 1.3: Rotating a square by 90◦ leaves it unchanged.

This property must somehow relate to the set {a, a2, a3,1}. This can be
acheived if we allow a to be defined as “a rotation by 90◦,” as strange as
that may seem. It would then follow that a2 would mean two rotations by
90◦, a3 would mean three rotations by 90◦, and a4 = 1 would mean four
rotations by 90◦ (i.e. do nothing). This interpretation for a is commonly
used in molecular physics to describe molecules with symmetry.
But what about the set {i,−1,−i, 1}? How does this set geometrically relate
to C4? If we connect these four points on the complex plane, we immediately
notice a square tilted to look like a diamond.
Notice that multiplication by ei

π
2 = i will rotate a complex number by π

2
=

90◦, so our previous interpretation of a holds in the complex plane with a = i.
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Re

Im

1

i

–1

–i

Figure 1.4: C4 symmetry in the complex plane

We can rewrite the elements of C4 in the following form:

i = ei π
2 = e

1
4
·2πi −1 = eiπ = e

2
4
·2πi −i = ei 3π

2 = e
3
4
·2πi 1 = e2πi = e

4
4
·2πi

C4 =
{
e

1
4
2πi, e

2
4
2πi, e

3
4
2πi, e

4
4
2πi

}
.

Therefore, another way of expressing the cyclic group C4 is to consider the
generator:

a = e
1
4
·2πi = e

2πi
4 .

We can easily extend this idea to cyclic groups of all orders n by slightly
modifying the above formula:

a = e
2πi
n .

This generator exponentiates to give us all the elements of the cyclic group,
including

an =
(
e

2πi
n

)n

= e2πi = 1 = 1 .

We see in Figure 1.5 that the group elements form n-sided polygons in the
complex plane.

Dihedral Groups

Until now, we’ve covered the rotational symmetry of a square using the cyclic
group C4. However, squares have another kind of symmetry: reflections. This
kind of symmetry can be described using the dihedral group Dn of order
2n, which has the following structure:

Dn =
{
1, a, a2, . . . , an−1, b, ba, ba2, . . . , ban−1

}
an = b2 = (ab)2 = 1
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Figure 1.5: n-sided polygons in the complex plane for n = 3, 4, 5

Notice that the dihedral group requires two generators a and b, which must
satisfy the three equations given above. As in the cyclic group, a retains its
interpretation as a rotation. Our new generator b, however, corresponds to
a reflection.
In order to fully show the difference between rotations and reflections, we
need to consider an oriented polygon: take a square, and add arrows to its
sides.

Figure 1.6: An oriented square

Rotating this oriented square by 90◦ will give us the same square with the
same orientation again. However, if we reflect it across the y-axis, we get the
same square but not the same orientation.
The group D4 is a group of order eight, with elements

D4 =
{
1, a, a2, a3, b, ba, ba2, ba3

}
and the defining identities

a4 = b2 = (ba)2 = 1 .

This definition of D4 is indeed complete. Other combinations of a and b are
possible, but they always reduce to one of the eight elements given above.
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Figure 1.7: Rotation and reflection of an oriented square

For instance, we have
ab = ba3 .

This shows us that the dihedral groups are clearly non-abelian. You can test
this identity visually by drawing arrows on a square piece of paper, making
it oriented. Also draw an axis through the middle around which to flip, as
well as a dot in one of the corners to keep track of the square’s motion.

Figure 1.8: Decorate a piece of paper like this to understand D4.

If you rotate the paper counter-clockwise by 90◦ and then flip it (ab), you’ll
get the same result by first flipping and then rotating by 270◦ (ba3). Be sure
to focus on the dot’s initial and final position.
We can prove this in a more mathematical fashion. If we take the identity

baba = 1 ,

multiply by b on the left and a3 on the right, we instantly get our desired
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identity:

b2aba4 = b1a3

ab = ba3 .

A good exercise for the reader is to prove the following identities, both visu-
ally and mathematically:

a2b = ba2 a3b = ba .

1.2 Subgroups

Definition

A subgroup S of a group G is defined to contain a subset of G and sat-
isfy the three defining conditions of a group using the same kind of group
multiplication. For instance, the group C4 = {1, a, a2, a3} is a subgroup of
D4 = {1, a, a2, a3, b, ba, ba2, ba3}.
D4 has two more subgroups. One is D4 itself, since for any set S we have
S ⊂ S. Another subgroup is simply {1}. In fact, every group has these
two subgroups: itself, and the identity. These are known as the trivial
subgroups. We’re usually interested in non-trivial subgroups, which are
sometimes referred to as proper subgroups.

Conjugate Elements

Two elements a and b of a group G are said to be conjugate if there exists
another element g ∈ G, called the conjugating element, so that

a = gbg−1 .

For instance, the elements a and a3 of the group D4 are conjugate since

bab−1 = bab = bba3 = a3 .

We denote this conjugacy relation by a ∼ a3. In fact, conjugation is an
example of an equivalence relation so that the following hold:

Reflexivity: a ∼ a
Symmetry: a ∼ b⇒ b ∼ a

Transitivity: a ∼ b ∧ b ∼ c⇒ a ∼ c
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Group elements that are conjugate to each other are also said to be similar.
In the case of a ∼ a3, we can actually visualize this: a 90◦ rotation about one
axis is the same as a 270◦ rotation about the opposite axis. The elements a
and a3 are certainly not equal, but at least they are similar.
One important detail to keep in mind is that the conjugating element g must
be a member of the group G. For instance, if we consider the group C4, the
relation a ∼ a3 does not hold anymore, since the conjugating element b does
not belong to C4.
We can list all the conjugation relations of the group D4:

1 a ∼ a3 a2 b ∼ ba2 ba ∼ ba3 .

Notice that we’ve neatly organized all eight elements of this group according
to conjugacy. We can thus introduce the notation

D4 =
{
(1), (a), (a2), (b), (ba)

}
,

where the parentheses denote a conjugacy class, defined by the set of all
conjugate elements:

(a) =
{
g ∈ G g ∼ a

}
.

Since conjugation is an equivalence relation, these conjugacy classes cannot
overlap each other; each element belongs to only one conjugacy class.

Normal Subgroups

A subgroup N of G is called a normal subgroup if

gng−1 ∈ N ∀n ∈ N ∀g ∈ G

That is, N isolates conjugate elements from the rest of the group so that
no element n ∈ N can be conjugate to another foreign element g /∈ N. We
denote a normal subgroup by N / G.
A normal subgroup always consists of a combination of complete conjugacy
classes, so they are easy to spot if the parent group G is broken down into
conjugacy classes. For instance, C4 is a normal subgroup of D4, since C4

consists of three conjugacy classes:{
(1), (a), (a2)

}
=

{
1, a, a2, a3

}
= C4 / D4 .

Another possible normal subgroup of D4 is{
(1), (a2)

}
=

{
1, a2

}
= C2 / D4 .
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Any combination of conjugacy classes forms a normal subgroup, as long as
the group properties are fulfilled. For instance, the set

{(1), (a)} =
{
1, a, a3

}
may consist of complete conjugacy classes, but it does not form a group since
it is not closed—it does not contain a · a.
As another example, let’s consider the group R of real numbers under addi-
tion. We see that no two group elements x ∈ R are conjugate, since

y · x · y−1 = y + x− y = x ∀y ∈ R .

(In fact, this is true for any Abelian group.) Since every number makes up its
own conjugacy class, any subgroup of R is a normal subgroup. For instance,
we take the group Z of integers under addition, which is a normal subgroup
of R:

Z /R .

Cosets

If we have a subgroup S = {s1, s2, . . . } of a group G, we can form an object
gS, called a coset, which is formed by premultiplying all elements of S with
g:

gS := {gs1, gs2, . . . } .

For instance, if we consider the subgroup C4 of D4, we can build the coset

aC4 =
{
a, a2, a3,1

}
= C4 .

Since we’re not too worried about the order of elements within a set, we can
safely say that aC4 = C4.
To be precise, we have just defined a left coset. A right coset Sg is formed
by postmultiplying all elements of S with g:

Sg := {s1g, s2g, . . . } .

Using cosets, we can provide an equivalent definition of a normal subgroup:

N / G :⇔ gNg−1 = N ∀g ∈ G .

Postmultiplying this equation by g shows us that for a normal subgroup, all
left and right cosets are equal:

gN = Ng ∀g ∈ G .
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Factor Groups

Given a group G and a normal subgroup N, we define the factor group as
the set of all cosets:

G�N := {gN}g∈G .

For instance, the factor group D4�C4 is easy to calculate:

1C4 =
{
1, a, a2, a3

}
= C4 ≡ E

aC4 =
{
a, a2, a3,1

}
= C4 ≡ E

a2C4 =
{
a2, a3,1, a

}
= C4 ≡ E

a3C4 =
{
a3,1, a, a2

}
= C4 ≡ E

bC4 =
{
b, ba, ba2, ba3

}
= bC4 ≡ A

baC4 =
{
ba, ba2, ba3, b

}
= bC4 ≡ A

ba2C4 =
{
ba2, ba3, b, ba

}
= bC4 ≡ A

ba3C4 =
{
ba3, b, ba, ba2

}
= bC4 ≡ A .

Using the notation C4 ≡ E and bC4 ≡ A, we have

D4�C4 = {E,A} .

So far, this seems to be a pointless set ornamented with arbitrary notation.
However, {E,A} is more than just a set. If we define an operation ? among
cosets in the following way,

(gN) ? (hN) := (g · h)N ,

and if we notice that this operation fulfills the defining properties of a group,
we see that our set of cosets actually forms a group under the operation
defined above. (In fact, we could always define a factor set G�S for a non-
normal subgroup S. However, this set does not form a group. See Jones,
§2.3.) Now that we know that D4�C4 forms a group, all that’s left to do is
to find out what kind of group it is. If we notice that

E ? E = (1C4) ? (1C4) = 1C4 = E

A ? E = E ? A = (1C4) ? (aC4) = aC4 = A

A ? A = (aC4) ? (aC4) = 1C4 = E ,

we see that the group

{E,A} A2 = E
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behaves exactly like the cyclic group of order two:

C2 = {1, a} a2 = 1 .

Thus, we have
D4�C4 = C2 .

(To be correct, we should write D4�C4
∼= C2, that is, the two groups are

isomorphic. We’ll define this term in the next section.)
A good exercise for the reader is to show that the following relations hold:

D4�C2 = D2 D4�D2 = C2 ,

where
D2 = {1, a, b, ba} a2 = b2 = (ba)2 = 1 .

Be sure to keep track of your a’s. The element a ∈ C2,D2 corresponds to a
180◦ rotation and is worth two elements a ∈ C4,D4, which correspond to a
90◦ rotation.
Intuitively, the factor group G�N treats the normal subgroup N as an identity
element E = 1N. We should somehow expect all the cosets to “collapse”
under this new identity. Recall that D4�C4 had eight possible cosets, but
they were all equal to either E or A. We then had to determine the structure
of this collapsed group.
Let’s explore another example. Recall that we recently showed that Z / R.
What kind of group should we expect from R�Z?
We’ll start by looking at the set of cosets x+ Z:

x+ Z = x+ {. . . ,−1, 0, 1, 2, . . . } = {. . . ,−1 + x, x, 1 + x, 2 + x, . . . } .

We first look at the new identity

0 + Z = {. . . ,−1, 0, 1, 2, . . . } = Z ≡ E .

If we consider cosets of small x, we simply end up with x+ Z = E + x:

0.1 + Z = {. . . ,−0.9, 0.1, 1.1, 2.1, . . . } ≡ E + 0.1

0.2 + Z = {. . . ,−0.8, 0.2, 1.2, 2.2, . . . } ≡ E + 0.2

However, once we reach x = 1, we get 1 + Z = Z ≡ E:

0.9 + Z = {. . . ,−0.1, 0.9, 1.9, 2.9, . . . } ≡ E + 0.9

1 + Z = {. . . ,−0, 1, 2, 3, . . . } = Z = ≡ E

1.1 + Z = {. . . , 0.1, 1.1, 2.1, 3.1, . . . } = 0.1 + Z = ≡ E + 0.1 .
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This cycle repeats itself every x = . . . ,−1, 0, 1, 2, . . . so that

· · · = −1 + Z = 0 + Z = 1 + Z = 2 + Z = · · · ≡ E

· · · = −0.9 + Z = 0.1 + Z = 1.1 + Z = 2.1 + Z = · · · ≡ E + 0.1

and so on. We can therefore “collapse” the set of all cosets {x+ Z} , x ∈ R
by rewriting them as

R�Z = {E + ϕ} ϕ ∈ [0, 1) .

E EE
+

0.5

E E
+

0.5

EE
+

0.5

EE
+

0.5

EE
+

0.5

−2
−1.5 −1

−0.5 0 0.5 1 1.5 2
2.5 3

R
R/Z

Figure 1.9: Comparing the groups R and R�Z

Since Z /R, we know that the cosets E + ϕ form a group. To calculate the
group multiplication ?, we notice that

(E + 0.9) ? (E + 0.2) = (0.9 + 0.2)Z = 0.1Z = E + 0.1 .

That is, the group multiplication ? is simply addition modulo 1, denoted
by +1. This kind of addition “wraps around” 1. A well-known example is
addition modulo 24—if we were to add six hours to 20h (8pm), we end up
with 2 o’clock, not 26 o’clock:

20 +24 6 = 2 .

Therefore, the quotient group R�Z has the structure of a group formed by
the set [0, 1) and addition modulo 1:

R�Z = [0, 1) .

If we consider the normal subgroup 2πZ = {. . . ,−2π, 0, 2π, 4π, . . . }, the
above argument produces

R�2πZ = [0, 2π) ,
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the group formed by the set [0, 2π) and addition modulo 2π.
Keep in mind that we have arrived at this answer using sheer “brute force.”
Although this method helps in visualizing the structure of the factor group,
the result is not always readily apparent. In the next section, we will discover
a slightly different way of determining factor groups via the first isomorphism
theorem.

1.3 Homomorphisms

Definition

We define a homomorphism f : G → H between two groups G and H as a
mapping with the simple, but important property

f(g · g′) = f(g) · f(g′) ∀g, g′ ∈ G .

This property is what separates homomorphisms from ordinary mappings.
Homomorphisms are particularly useful since they ensure that the group
multiplication of G is preserved in H. Homomorphisms also have the following
properties:

Proposition 1.1 Let f : G → H be a homomorphism. We have

1. f(1) = 1

2. f(g−1) = f(g)−1 ∀g ∈ G.

Proof: We first show 1. by noticing that

f(g) = f(g · 1) = f(g) · f(1) .

Multiplying both sides by f(g)−1 gives us 1 = f(1). To show 2. we start
with

1 = f(1) = f(g · g−1) = f(g) · f(g−1) .

Multiplying both sides by f(g)−1 gives f(g)−1 = f(g−1).

�

We are already familiar with an example of a homomorphism:

f : C4 → C f(a) := i .
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This homomorphism connects the abstract cyclic group C4 with concrete
complex numbers. We can easily calculate the action of f on the other group
members, since f is homomorphic:

f(a2) = f(a · a) = f(a) · f(a) = i · i = −1

f(a3) = f(a · a2) = f(a) · f(a2) = i · −1 = −i

f(1) = f(a4) = f(a · a3) = f(a) · f(a3) = i · −i = 1 .

Subgroups Formed by Homomorphisms

When given a homomorphism f : G → H, we can identify two important
subgroups. The first one is called the image of f , written as im f ⊂ H. It is
the set of all h ∈ H which are mapped by f :

im f :=
{
h ∈ H h = f(g) g ∈ G

}
The kernel of f , written as ker f ⊂ G, is the set of all g that are mapped
into the identity element 1 of H:

ker f :=
{
g ∈ G f(g) = 1H

}
imf is sometimes written as f(G), and kerf is sometimes written as f−1(1H).
The image of a mapping is also referred to as the range.

Proposition 1.2 The kernel of a homomorphism f : G → H is a normal
subgroup of G:

ker f / G .

Proof: Let k ∈ ker f so that f(k) = 1. We thus have

f(gkg−1) = f(g)f(k)f(g−1) = f(g)1f(g)−1 = 1 ∀g ∈ G .

We thus have gkg−1 ∈ ker f for all g ∈ G.

�

Isomorphisms

A homomorphism f : G → H is called injective if every h ∈ H is mapped by
at most one g ∈ G. We see that f : C4 → C is indeed injective:

a 7→ i

a2 7→ −1

a3 7→ −i

a4 7→ 1 .
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Alternatively, we can simply focus on the fact that the only element that
maps to 1 is a4 = 1, that is, the kernel of f is {1}. This fact is guaranteed
by the following proposition:

Proposition 1.3 Let f : G → H be a homomorphism. It is injective if and
only if ker f = {1}.

f injective ⇔ ker f = {1} .

Proof: First, assume f is injective. Let g ∈ ker f so that f(g) = 1. By
Proposition 1.1, we have

f(g) = 1 = f(1) .

Since f is injective, we have g = 1. The above holds for all g ∈ G, producing
ker f = {1}. Conversely, assume ker f = {1}. Let g, γ ∈ G so that f(g) =
f(γ). If we consider the element gγ−1, we see that

f(gγ−1) = f(g)f(γ−1) = f(g)f(γ)−1 = 1 .

This shows that gγ−1 ∈ ker f . Since, by assumption, the kernel only consists
of the identity element, we see that gγ−1 = 1. Multiplying both sides by γ
shows us that

f(g) = f(γ) ⇔ g = γ .

Therefore, f is injective.

�

A homomorphism f : G → H is called surjective if every h ∈ H is mapped
by at least one g ∈ G. Our previous homomorphism is not surjective, but
this can be easily remedied by a minor cosmetic fix: replace H with the image
of f :

f : C4 → {i,−1,−i, 1} .
(Generally speaking, given a mapping f : D → C on a domain D, we can
trivially make f surjective by setting the codomain C equal to im f .)
A homomorphism f : G → H is called bijective if it is both injective and
surjective. A bijective homomorphism is also known as an isomorphism.
Two groups G and H are called isomorphic if there exists an isomorphism
f between them. We denote them by G ∼= H.
Isomorphic groups are essentially the same. They may differ in form, but
they have the same structure. Group theory cannot distinguish between
them. Because the homomorphism f : C4 → {i,−1,−i, 1} is bijective, we
have

C4
∼= {i,−1,−i, 1} .
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(The notion of isomorphism is very powerful, but surjectivity is often a nui-
sance since it is trivial to make any simple mapping surjective. For instance,
the homomorphism f : C4 → C is not surjective, and therefore not techni-
cally an isomorphism. Instead, we’d constantly have to rewrite f to make
it surjective, leading to overly-explicit and drawn out mapping declarations
like f : C4 → {i,−1,−i, 1} ⊂ C. For this reason, we will later introduce the
notion of a faithful homomorphism. This is just a synonym for injective, so
that when we say, for instance, that f : C4 → C is faithful, we understand
that f is an isomorphism on its image, not on all of C.)
A bijective mapping is also called invertible, since for every bijective map-
ping f there exists a bijective inverse mapping f−1 with f◦f−1 = f−1◦f = id.
An injective mapping is also referred to as one-to-one. A bijective mapping
is also referred to as one-to-one correspondence. An isomorphism f : G → G,
which maps a group onto itself, is called an automorphism. The set of auto-
morphisms of a group, denoted by Aut G, forms a group under composition.

The First Isomorphism Theorem

We will now concern ourselves with the first isomorphism theorem for groups.
Using this theorem, we will have another way of determining factor groups.

Theorem 1.4 (First Isomorphism Theorem) Let G and H be groups,
and f : G → H be a homomorphism. We have

G�ker f ∼= im f .

Proof: See Jones, §2.4.
(There are two further isomorphism theorems, which are more intricate and
less prominent than the first one given above. They are beyond the scope of
this script and won’t be included.)
Let’s return to the example of R�Z. Consider the mapping f : R → C

∗

defined by
f(x) = eix ,

where C∗ is the group formed by the set C \ {0} under scalar multiplication.
We see that f is a homomorphism because

f(x+ y) = ei(x+y) = eix · eiy = f(x) · f(y) .

Its image and kernel are

im f = S1 =
{
z ∈ C |z| = 1

}
ker f = 2πZ = {· · · − 2π, 0, 2π, 4π, . . . } ,
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where S1 is the unit circle. The first isomorphism theorem gives us

R�2πZ ∼= S1 .

Recall in the last section where we showed by “brute force” that

R�2πZ ∼= [0, 2π) .

A little thought will convince the reader that S1 and [0, 2π) are indeed iso-
morphic. (One could also consider the mapping ϕ 7→ eiϕ, which is a bijective
homomorphism.)
Using the first isomorphism theorem is the sophisticated way to determine
factor groups. The brute force method requires the cumbersome notion of
cosets, which the first isomorphism theorem avoids entirely. However, do
realize that the theorem has a pricey requirement. We need an explicit ho-
momorphism, and arriving at one isn’t always a straightforward task. Some
texts might even grant the reader with a conveniently given homomorphism,
providing one with the impression that determining factor groups is incredi-
bly easy. Notice that the previous example R�Z = S1 is guilty of this. If a
similar example is difficult to grasp intuitively, try the brute force method to
understand the homomorphism as well as the structure of the factor group.

1.4 Algebras

Aside from groups, we will be dealing with another kind of important math-
ematical structure in this text, namely that of an algebra.

Definition

We will begin with a mathematical structure which should already be familiar
to the reader. A vector space

(V,+, ·)

over a field K is a set V together with two operations vector addition +
and scalar multiplication · which satisfy the following properties: Vector
addition is associative, commutative, has an identity 0, and is invertible.
Scalar multiplication is associative, has an identity 1, is distributive over
vector addition, and is distributive over field addition.
An algebra

A = (V,+, ·,×)
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is simply a vector space V over a field K, with an extra operation × called
algebra multiplication which is bilinear:

(x + y)× z = x× z + y × z x× (y + z) = x× y + x× z

(ax)× y = a(x× y) x× (by) = b(x× y)

Notice that we don’t require the multiplication × to be commutative or even
associative. In general,

x× y 6= y × x x× (y × z) 6= (x× y)× z

In fact, if a multiplication isn’t associative, we usually (but not always)
denote it with some sort of brackets like [ , ] instead of a lone symbol like ×:

[x,y] 6= [y,x] [x, [y, z]] 6= [[x,y] z]

Therefore, we introduce the notion of an associative algebra for the special
case of an algebra formed under an associative algebra multiplication.

Structure Constants

Say we have a basis {e1, . . . , en} of the algebra A, where x,y ∈ A are given
by linear combinations of the basis vectors:

x = xiei y = yjej xi, yj ∈ K .

We see that the product of any two vectors is given by

x× y = (xiei)× (yjej) = xiyi(ei × ej) .

Therefore, if we can describe how the algebra multiplication acts on the basis

ei × ej ,

then we have essentially described how the algebra multiplication acts on all
vectors x,y ∈ A.
Because algebra multiplication is closed, we know that ei × ej ∈ A. That is,
it must be a linear combination of the basis vectors {ei, . . . , en}:

ei × ej = c k
ij ek

The numbers ckij ∈ K are called structure constants. Knowing these con-
stants may allow us to identify an algebra up to isomorphism, but they
depend on the basis chosen.



CHAPTER 1. GROUPS 20

Lie Algebras

One important example of an algebra is a Lie algebra. Its algebra multipli-
cation is denoted by [ , ] and is referred to as the Lie bracket. It satisfies
the following properties:

• Bilinearity: [ax + by, z] = a [x, z] + b [y, z]

• Antisymmetry: [x,y] = − [y,x]

• The Jacobi Identity: [x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0

Notice that the Lie bracket is neither commutative nor associative.
For example, consider the vector space M of n × n matrices. Notice that
there are two possible algebra multiplications. First, we have matrix multi-
plication ·, which is associative:

(M1 ·M2) ·M3 = M1 · (M2 ·M3) .

There’s also the commutator

[M1,M2] := M1 ·M2 −M2 ·M1 ,

which is not associative but does satisfy the defining properties of a Lie
bracket. Therefore, the vector space of matrices can form two different alge-
bras: the associative algebra (M, ·) and the Lie algebra (M, [ , ]).
Another example of an algebra is the vector space R3 with respect to the
canonical basis {e1, e2, e3} and the Euclidean cross product × as algebra
multiplication:

A = (R3,×) .

The cross product also satisfies the three properties of a Lie bracket, making
A a Lie algebra. We already know the structure constants of this algebra,
since

ei × ej = ε k
ij ek .

That is, the structure constants are given by the totally antisymmetric tensor
of rank 3

c k
ij = ε k

ij =


1 for sgn(σ) = 1

−1 for sgn(σ) = −1
0 otherwise

where σ({1, 2, 3}) = {i, j, k}.
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Homomorphisms Between Algebras

A homomorphism f : A → B can be defined on two algebras A and B as a
mapping with the property

f [X, Y ] = [fX, fY ] ∀X, Y ∈ A

The image im f of a homomorphism f : A→ B is defined as

im f :=
{
b ∈ B b = f(a) a ∈ A

}
.

The kernel ker f of a homomorphism f : A→ B is defined as

ker f :=
{
a ∈ A f(a) = 0

}
.

A homomorphism f : A→ B is called injective if every b ∈ B is mapped by
at most one a ∈ A. It is called surjective if every b ∈ B is mapped by at
least one a ∈ A. A homomorphism f : A→ B is called bijective if it is both
injective and surjective.
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Representations

We have already seen that the group C4 can be mapped into the complex
plane C by the homomorphism

f(a) = i .

That is, we can associate group elements with points on a complex space.
However, we need something more powerful than f if we want to take advan-
tage of the symmetries that groups portray. This is where representations
come into play.

2.1 General Representations

The General Linear Group GL(V )

Let V denote some vector space. We define the general linear group GL(V )
as the set of all bijective linear transformations on V :

GL(V ) :=
{
T : V → V T bijective

}
(Because all bijective linear transformations T : V → V are simply automor-
phisms, we could also write Aut(V ) instead of GL(V ).)
This space forms a group under composition ◦. GL(V ) contains several sub-
groups. The most prominent ones are the so-called classical subgroups :
Let s : V × V → R be a nondegenerate symmetric bilinear form: s(u, v) =
s(v, u). The orthogonal group O(V ) ⊂ GL(V ) contains transformations
that preserve s:

O(V, s) :=
{
T ∈ GL(V ) s(Tu, Tv) = s(u, v)

}
22
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Let h : V × V → C be a nondegenerate hermitean bilinear form so that
h(u, v) = h(v, u)∗. The unitary group U(V ) ⊂ GL(V ) contains transforma-
tions that preserve h:

U(V, h) :=
{
T ∈ GL(V ) h(Tu, Tv) = h(u, v)

}
Let a : V × V → K be a nondegenerate anti-symmetric bilinear form so
that a(u, v) = −a(v, u). The symplectic group Sp(V ) ⊂ GL(V ) contains
transformations that preserve a:

Sp(V, a) :=
{
T ∈ GL(V ) a(Tu, Tv) = a(u, v)

}
These admittedly abstract definitions will have more significance as we con-
sider matrix representations in the next subsection.

Representations

A representation is a homomorphism D : G → GL(V ) that maps a group
element g ∈ G to a linear transformation D(g) : V → V . Because represen-
tations are homomorphisms, don’t forget that

D(g · g′) = D(g) ·D(g′) .

So why are representations so important? Well, recall the homomorphism
f : C4 → C

f(a) = i .

This mapping is not a representation since it maps into C, not GL(V ). That
is, it simply assigns each group element to a point in the complex plane.
Now consider the representation D : C4 → GL(C)

D(a) = i ·

D(a) may be some point in the complex plane, but it is better viewed as
a linear transformation D(a) : C → C, which rotates any z ∈ C by π

2
. In

this way, the concept of rotation provided by the abstract group element a
is “represented” in the complex plane by D

D(a) z = i · z .

In fact, we can extend this representation to the dihedral group of order four.
Consider now the representation D : D4 → C defined by

D(a)z = iz D(b)z = z∗ .
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z

D(a)z

Figure 2.1: The linear transformation D(a), which rotates z

We see that the concept of reflection provided by the abstract group element
b is also “represented” in the complex plane by D. Notice that D(b) cannot
correspond to any complex number; it can only be viewed as a transforma-
tion.

Re

Im

1

i

z

D(b)z

Figure 2.2: The linear transformation D(b), which reflects z

By mapping into linear transformations, representations give groups the
power to manipulate and transform any kind of vector space.

Terminology

A representation D of a group G is called faithful if it is injective, that is,
if it is an isomorphism on its image. Group elements g and transformations
D(g) are indistinguishable, and we essentially have an identical copy of G as
a subgroup of GL(V ). The representation of the group D4 given earlier is
indeed faithful. Therefore, the transformations D(a) and D(b) are essentially
the same as the group elements a and b.
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The carrier space refers to the vector space V whose linear transformations
are mapped by D. The representation of D4 given earlier has a carrier space
C. Many different carrier spaces are possible. For instance, the space of
quantum-mechanical wavefunctions L2(R3, dµ) is a common carrier space in
quantum mechanics. (In such a case, the linear transformations produced
are commonly known as operators.)
A representation D is said to have a dimension equal to that of its carrier
space V

dim(D) = dim(V )

A representation is called real or complex, depending on whether its carrier
space is real or complex.
If V carries a scalar product 〈·, ·〉 on V , then we say that a representation D
is orthogonal (real case) or unitary (complex case) if

〈D(g)u,D(g)v〉 = 〈u, v〉 ,
or equivalently,

〈D(g)u, v〉 =
〈
u,D(g)−1v

〉
.

Invariance and Reducibility

Recall that the group C4 corresponds to the symmetry of a square. That is,
a rotation of 90◦ leaves a square unchanged. In other words, the square is
left invariant under a C4 transformation.
Let T : G → GL(V ) be a representation. A subspace S ⊂ V is called
invariant under T if

s ∈ S ⇒ T (g) s ∈ S ∀g ∈ G .

That is, every transformation T(g1),T(g2), . . . promises not to kick any vec-
tor s out of its subspace S. A subspace S invariant under T can be said to
have the same symmetry as the group G.
A representation T : G → GL(V ) is called reducible if there exists a non-
trivial subspace S (i.e. S 6= {0} and S 6= V ) that is invariant under T.
A representation T : G → GL(V ) is called completely reducible if every
non-trivial subspace S has an invariant complement S ′.
As their names imply, reducible representations can still be “reduced” into
components. Let T be a completely reducible representation with an invari-
ant subspace S ⊂ V . Just as V consists of a direct sum of a subspace and
its orthogonal complement,

V = S ⊕ S ′
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a completely reducible representation T takes on the form

T = TS ⊕ TS⊥ .

Perhaps TS can be completely reduced even further by invariant subspaces
R ⊂ S, or perhaps there aren’t any subspaces of S (or of S⊥) that are
invariant under T. In this case, we would call TS (or TS⊥) irreducible:
A representation T : G → GL(V ) is called irreducible if it is not reducible.
That is, the only invariant subspaces S ⊆ V are trivial.

2.2 Matrix Representations

Another kind of representation is so useful, we will devote an entire section
to it. These use the carrier spaces Rn or Cn. Recall from linear algebra that
any linear transformation over these spaces can be expressed as a matrix M
by transforming the basis ei:

Mi
jei = T̂ej

Thus, any operator T(g) can be identified as an n× n matrix defined by

T(g)ei = D(g)i
jej .

We call this representation D a matrix representation. These kinds of rep-
resentations allow us to tackle group theory using the reliable techniques
learned in linear algebra.

The General Linear Group and its Subgroups in Matrix
Form

We define the general linear groups of invertible (i.e. non-zero determinant)
matrices:

GL(n,R) :=
{
M ∈ Rn×n detM 6= 0

}
GL(n,C) :=

{
M ∈ Cn×n detM 6= 0

}
.

Notice that these matrix groups correspond to the groups GL(Rn) and GL(Cn)
of linear transformations. In particular, we define the special linear groups
of matrices with unit determinant:

SL(n,R) :=
{
M ∈ Rn×n detM = 1

}
SL(n,C) :=

{
M ∈ Cn×n detM = 1

}
.
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The Euclidean dot product · acts as a symmetric bilinear form over Rn. We
see that it is preserved by orthogonal matrices:

M~x ·M~y = ~x · ~y ⇔ MTM = 1 .

Thus, we define the group of orthogonal matrices and its special subgroup:

O(n) :=
{
M ∈ GL(n,R) MTM = 1

}
SO(n) :=

{
M ∈ O(n) detM = 1

}
.

Notice that the matrix group O(n) corresponds to the group O(Rn, ·) of
linear transformations, and that an orthogonal matrix M ∈ O(n) preserves
the length of a vector ~x ∈ Rn

‖M~x‖2 = M~x ·M~x = ~x · ~x = ‖~x‖2

The hermitean scalar product 〈 , 〉 acts as a hermitean bilinear form over
C

n. We see that it is preserved by unitary matrices:

〈Mu,Mv〉 = 〈u, v〉 ⇔ M†M = 1 .

Thus, we define the group of unitary matrices and its special subgroup as

U(n) :=
{
M ∈ GL(n,C) M†M = 1

}
SU(n) :=

{
M ∈ U(n) detM = 1

}
.

Notice that the matrix group U(n) corresponds to the group U(Cn, 〈, 〉) of
linear transformations, and that a unitary matrix M ∈ U(n) preserves the
norm of a complex number v ∈ Cn

‖Mv‖2 = 〈Mv,Mv〉 = 〈v, v〉 = ‖v‖2 .

Terminology

A homomorphism D : G → GL(n,R) is called a real matrix representa-
tion and a homomorphism D : G → GL(n,C) is called a complex matrix
representation. They allow us to qualitatively express a group’s action on
R

n or Cn using matrices.
The number n refers to the dimension of a representation, which is equal
to the dimension of the carrier space.
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Characters and Equivalent Representations

Although matrices allow us to concretely express a linear transformation on
R

n or Cn, they do have a certain weakness: they depend on the basis chosen.
A single transformation corresponds to a set of infinitely many matrices which
are related by a similarity transformation

M′ = SMS−1 S ∈ SO(n) (real case)

M′ = SMS−1 S ∈ SU(n) (complex case) ,

where the matrix S transforms an oriented, orthonormal basis. (For an
arbitary basis, S ∈ GL(n,R), GL(n,C).) These similar matrices may be
infinite in number, but they are all related by a simple fact—their traces are
the same:

tr M′ = tr SMS−1 = tr M .

Thus, we can define an equivalence relation between similar matrices:

M′ ∼ M :⇔ tr M′ = tr M .

We use the same idea for matrix representations. Let D be a matrix repre-
sentation of a group G. The mapping χ : G → C defined by

χ(g) := tr D(g)

is called the character of the matrix representation D.
(Some authors additionally define χ to be a set of traces of all matrices D(g):

χ := {χ(g)}g∈G := {tr D(g)}g∈G

where χ(g) = tr D(g).)
Just as we have established an equivalence relation among matrices, we can
establish an equivalence relation among matrix representations in the same
way. Two matrix representations D,D′ : G → GL(n,K) are called equiva-
lent if their characters are identical:

D ∼ D′ :⇔ χD = χD′

Proposition 2.1 Two matrix representations D and D′ are equivalent if and
only if:

D′(g) = SD(g)S−1 ∀g ∈ G .
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Reducibility

The abstract definition given earlier of a reducible representation T : G →
GL(V ) can be expressed more concretely if we consider a corresponding ma-
trix representation D : G → GL(n,K).

Proposition 2.2 Any reducible matrix representation is equivalent to a ma-
trix representation D that is of the form

D(g) =

[
D1(g) E(g)

0 D2(g)

]
,

while any completely reducible matrix representation is equivalent to a matrix
representation D of the form

D(g) =

[
D1(g) 0

0 D2(g)

]
.

Proof: Let V = S ⊕ S ′ with s ∈ S, t ∈ S ′. We write

v =

[
s
t

]
.

Since D is reducible, we have

S 3 s =

[
s
0

]
⇒ D(g) s =

[
D(g)1

1 D(g)1
2

D(g)2
1 D(g)2

2

] [
s
0

]
=

[
D(g)1

1 s
D(g)2

1 s

]
∈ S .

Since D(g) s cannot have an S ′-component, D(g)2
1 = 0. If D is completely

reducible, the same argument holds for S ′, where D(g)1
2 = 0.

�

Recall from linear algebra that a vector space V can be decomposed into a
direct sum of two subspaces

V = S1 ⊕ S2 :⇔ V 3 v =

[
s1

s2

]
provided that S1 ∩ S2 = 0. Similarly, we can express a completely reducible
representation by

D = D1 ⊕D2 :⇔ D(g) =

[
D1(g) 0

0 D2(g)

]
∀g ∈ G .
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D1 and D2 are also representations, where D1(g) : V1 → V1 (with V1 ≡ S)
and D2 : V2 → V2 (with V2 ≡ S⊥).
If these two representations are again completely reducible, we can continue
reducing until we end up with a set of irreducible representations

D = D1 ⊕D2 ⊕ · · · ⊕DN =
N⊕

ν=1

Dν .

2.3 Irreducible Representations

In this section, we will explore some properties of irreducible representations.

Proposition 2.3 Every reducible unitary representation T is completely re-
ducible.

Proof: Let T : G → GL(V ) be reducible and unitary, and let S ⊂ V be a
nontrivial subspace invariant under T. We show that S⊥ is invariant under
T.

s ∈ S, t ∈ S⊥ ⇒ 0 = 〈s, t〉
S invariant ⇒ 0 = 〈T(g)s, t〉
T unitary ⇒ 0 =

〈
s,T−1(g)t

〉
=

〈
s,T(g−1)t

〉
⇒ T(g−1)t ∈ S⊥

Writing h ≡ g−1, we see that

t ∈ S⊥ ⇒ T(h)t ∈ S⊥ ∀h ∈ G .

Thus, S⊥ is invariant under T, and we conclude that T is completely re-
ducible.

�

Theorem 2.4 (Maschke’s Theorem) All reducible representations of a
finite group are completely reducible.

Proof: We define a new scalar product by

{v, w} :=
1

ord G

∑
g∈G

〈T(g)v,T(g)w〉 .
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Applying this shows

{T(g′)v,T(g′)w} =
1

ord G

∑
g∈G

〈T(g)T(g′)v,T(g)T(g′)w〉

=
1

ord G

∑
g∈G

〈T(gg′)v,T(gg′)w〉

=
1

ord G

∑
h∈G

〈T(h)v,T(h)w〉

{T(g′)v,T(g′)w} = {v, w} ,

where g′ ∈ G and gg′ = h ∈ G, and
∑

g∈G =
∑

h∈G as long as G is of finite
order. We see that T is unitary with respect to this new scalar product.
According to Proposition 2.3, T is thus completely reducible.

�

Theorem 2.5 (Schur’s First Lemma) Let T : G → GL(V ) be a complex
irreducible representation, and let B̂ : V → V be some linear operator that
commutes with all T(g):

B̂ T(g) = T(g) B̂ ∀g ∈ G .

Then B̂ = λ1 for λ ∈ C.

Proof: Let B̂ possess some eigenvector b with eigenvalue λ

B̂b = λb .

Then
B̂ · T(g)b = T(g)B̂b = λ · T(g)b ∀g ∈ G .

That is, T(g)b is also an eigenvector of B̂ with eigenvalue λ. Since Eλ, the
space of all eigenvectors of B̂ with eigenvalue λ, is a subspace of V , we have

b ∈ Eλ ⇒ T(g)b ∈ Eλ ∀g ∈ G .

Thus, the eigenspace Eλ is a subspace invariant under T. Since T is irre-
ducible, Eλ must be one of the trivial subspaces V or {0}. Since eigenvectors
are by definition nonzero, we rule out {0} and conclude that Eλ = V . That
is, all vectors v ∈ V are eigenvectors to B̂ with eigenvalue λ:

B̂v = λv ∀v ∈ V .

Thus, B̂ = λ1.
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�

Theorem 2.6 (Schur’s Second Lemma) Let T1 : G → GL(V1) and T2 :
G → GL(V2) be two irreducible representations of G, and let B̂ : V1 → V2 be
a linear operator satisfying

B̂T1(g) = T2(g)B̂ ∀g ∈ G .

Then B̂ is an isomorphism, or B̂ = 0̂, that is B̂v = 0 ∀v ∈ V1.

Proof: We consider three cases.

1. dimV1 < dimV2

By construction,
B̂T1(g)v︸ ︷︷ ︸
∈ im B̂ ⊆ V2

= T2(g)B̂v .

Thus, T2(g)B̂v ∈ im B̂. Because we have

B̂v ∈ im B̂ ⇒ T2(g)B̂v ∈ im B̂ ∀B̂v ∈ im B̂, g ∈ G ,

we see that imB̂ is a subspace invariant under T2. Since T2 is irreducible,
im B̂ must be either V2 or {0}. The first option is impossible, since it
would lead us to dim im B̂ = dimV2. This contradicts

dim im B̂ ≤ dimV1 < dimV2 .

Thus, we must accept the second option, im B̂ = {0}, and conclude
that

B̂v = 0 ∀v ∈ V1 .

2. dimV1 > dimV2

Consider an element k ∈ ker B̂ ⊆ V1 so that

B̂k = 0 .

By construction,
B̂T1(g)k = T2(g)B̂k = 0 .

Thus, we have T1(g)k ∈ ker B̂. Since

k ∈ kerB ⇒ T1(g)k ∈ ker B̂ g ∈ G ,
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we see that ker B̂ is a subspace invariant under T1. Since T1 is irre-
ducible, ker B̂ is either V1 or {0}. The second option is impossible, since
that would lead us to dim ker B̂ = 0. This contradicts

0 < dimV1 − dimV2 ≤ dim ker B̂ ,

which follows from dimV1 = dim im B̂ + dim ker B̂ and dim im B̂ ≤
dimV2. Thus, we must accept the first option, ker B̂ = V1, and

B̂v = 0 ∀v ∈ V1 .

3. dimV1 = dimV2

As in 2., ker B̂ is an invariant subspace, and must be either V1 or {0}.
The second option is again impossible, since ker B̂ = {0} would mean
that B̂ were invertible, which would make

B̂T1(g) = T2(g)B̂

T1(g) = B−1T2(g)B̂

.

That is, T1(g) and T2(g) would be equivalent, contradicting the con-
struction. Thus, we must accept the first option, ker B̂ = V1, and

B̂v = 0 ∀v ∈ V1 .

�

Theorem 2.7 (The Orthogonality Theorem) Let D : G → GL(V ) be
a completely reducible matrix representation. Let V =

⊕N
ν=1 Vν, and D =⊕N

ν=1 Dν be a decomposition into irreducible representations. Let Dν and Dµ

denote two of these irreducible representations. We have:

dimVν

ord G

∑
g∈G

Dν(g)
i
qDµ(g−1)p

j = δνµδ
i
jδ

p
q .

Proof: Let Â : Vν → Vµ be some transformation, and define

B̂ :=
∑
g∈G

Tµ(g)ÂTν(g
−1) .
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Thus, for all h ∈ G, and writing g′ = hg, we have

Tµ(h)B̂ =
∑
g∈G

Tµ(h)Tµ(g)ÂTν(g
−1)

=
∑
g∈G

Tµ(hg)ÂTν(g
−1)

=
∑
g′∈G

Tµ(g′)ÂTν(g
′−1h)

=
∑
g′∈G

Tµ(g′)ÂTν(g
′−1)Tν(h)

Tµ(h)B̂ = B̂Tν(h)

.

By Schur’s First Lemma (Thm. 2.5), we have B̂ = λ1. By Schur’s Second
Lemma (Thm. 2.6), λ̂ = 0 unless µ = ν. Writing B̂ out in matrix form then
gives us

Bi
j =

∑
g∈G

Dµ(g)i
mAm

nDν(g
−1)n

j = λAδνµδ
i
j ,

where λA denotes the dependence of λ on A. This equation holds for all A,
so we choose Am

n = δm
qδ

p
n for p, q fixed. Thus,∑

g∈G

Dµ(g)i
qDν(g

−1)p
j = λpqδµνδ

i
j

We solve for λpq by setting ν = µ and then taking the trace of both sides
(i.e. setting i = j): ∑

g∈G

Dν(g)
i
qDν(g

−1)p
j = λpqδ

i
j∑

g∈G

(
Dν(g

−1)Dν(g)
)p

q
= λpq dimVν

δp
qord G = λpq dimVν

λpq = δp
q

ord G

dimVν

.

�
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Corollary 2.8 (Orthogonality of Characters) We first define a charac-
ter “product” by

〈χµ, χν〉 :=
1

ord G

∑
g∈G

χµ(g)χν(g
−1) .

Now let Dµ,Dν be two irreducible representations, and let χµ, χν denote their
characters. We have

〈χµ, χν〉 = δµν .

Consider a decomposition of a completely reducible representation

D = D1 ⊕D2 ⊕ · · · ⊕DM =
M⊕

µ=1

Dµ .

It may be the case that some of the irreducible representations Dµ are iden-
tical. For instance, if D3 = D4, we could write

D1 ⊕D2 ⊕ 2D3 ⊕ · · ·

insead of
D1 ⊕D2 ⊕D3 ⊕D4 ⊕ · · · .

Notice that when we write 2Dµ, we don’t mean “multiply Dµ by the number
two.” Instead, when we decompose a matrix D(g) into block diagonal form,
we get two identical blocks Dµ(g).
We can take advantage of this notation by slipping in a coefficient aν ∈ N
into the decomposition of D:

D = a1D1 ⊕ a2D2 ⊕ · · · ⊕ aNDN =
N⊕

ν=1

aνDν .

The coefficient aν can be easily determined by the characters of the repre-
sentations:

Corollary 2.9 (Decomposition into Irreducible Components) Let D
be a completely reducible representation with character χ. Its decomposition
is

D =
N⊕

ν=1

〈χ, χν〉Dν ,

where the index ν runs through all unique irreducible representations Dν with
characters ξν.
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Corollary 2.10 (Clebsch-Gordan Decomposition) Let Dµ,Dν be two ir-
reducible representations as above, with characters χµ, χν. Their tensor prod-
uct is reducible and has the following decomposition

Dµ ⊗Dν =
N⊕

σ=1

〈χσ, χµχν〉Dσ ,

where the index ν runs through all unique irreducible representations Dν with
characters ξν
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Rotations

Recall that the group Cn is generated by a single element a which means
“rotate by 2π

n
.” The mapping

f(a) = ei 2π
n

associates abstract group elements to points on the complex plane. These
points all lie on the unit circle.

C3 C4 C∞C5

· · ·

Figure 3.1: Each point stands for a group element.

Since all these points represent rotations, we somehow expect the unit circle
to contain all possible rotations.

3.1 The Lie Group SO(2)

We define the abstract group of proper rotations SO(2) to contain all rota-
tions about the origin of a two-dimensional plane, where a proper rotation
denotes the absence of reflections. Unless otherwise specified, all rotations
referred to are assumed to be proper.

37
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Unlike the cyclic groups Cn, the group of rotations SO(2) has infinitely
many elements, which need to be specified using a continuous parameter
ϕ ∈ [0, 2π). We thus have group operation ◦, identity element 1 = id, and
inverse element of a rotation by the same angle back. This group is further-
more abelian.

Matrix Representations of SO(2)

One matrix representation R of SO(2) under the standard basis {e1, e2} is
defined by

R : SO(2) → GL(2,R) R(ϕ) ≡ Rϕ =

[
cosϕ − sinϕ
sinϕ cosϕ

]
.

Since R(ϕ) = 1 is fulfilled only for ϕ = 0, which corresponds to the iden-
tity element, we see that ker R = {1}. By Proposition 1.3, we see that
R is injective and therefore faithful. Notice also that R(ϕ)TR(ϕ) = 1 and
det R(ϕ) = 1; the using this faithful representation R, we can formulate an
equivalent definition of SO(2).
The group SO(2) is the group of all 2× 2 orthogonal matrices R

SO(2) :=
{
R ∈ GL(2,R) R>R = 1 detR = 1

}
.

Notice that since R is faithful, the abstract group SO(2) of rotations and the
group SO(2) of orthogonal matrices are identical.
The representation R : SO(2) → GL(2,R) is irreducible. However, the com-
plex representation

R : SO(2) → GL(2,C) R(ϕ) =

[
eiϕ 0
0 e−iϕ

]
is clearly reducible. It reduces into

R(ϕ) = U(ϕ)⊕ U(−ϕ)

U(ϕ) = eiϕ ,

where U : SO(2) → GL(1,C) is irreducible and one-dimensional. The image
of U is actually U(1), the group of all unitary 1 × 1 matrices (i.e. single
numbers):

U(1) :=
{
M ∈ GL(1,C) M†M = 1

}
.

Since U is injective on U(1), it follows from the first isomorphism theorem
(Thm. 1.4) that

SO(2) ∼= U(1) .
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Notice that elements U(ϕ) = eiϕ of U(1) lie along S1, the unit circle in the
complex plane

S1 :=
{
z ∈ C |z| = 1

} ∼= U(1) .

Thus, we have
SO(2) ∼= S1 .

Just as the unit circle contains all points e
2πi
n , the group SO(2) contains all

groups Cn. Notice that in the course of this script, we’ve shown a pretty long
chain of isomorphisms:

SO(2) ∼= SO(2) ∼= U(1) ∼= S1 ∼= [0, 2π) ∼= R/Z .

Manifolds and Lie groups

SO(2) is our first example of a continuous group, also known as a Lie group:
a differentiable manifold whose elements satisfy the properties of a group.
The precise definition of a manifold is too elaborate for our purposes, so we
just briefly go over some of its key properties.
Manifolds have differing global and local structures. On a small scale, a
manifold simply looks like a Euclidean space Rn. However, on a large scale, a
manifold can take on more interesting geometries. For instance, the manifold
S1 has the global structure of a circle, but the local structure of a straight
line, R1.
A manifold M is called connected if it is not disconnected, that is, if it is
not a union of two disjoint, non-empty, open sets. In a connected manifold,
all points are connected to each other somehow. In a simply connected
manifold, every closed path contained in M can be shrunk down to a single
point. For instance, a torus (mathematical equivalent of a donut) is not
simply connected.
We can parametrize a Lie group G by using a curve γ : R → G. We simply
require that γ(0) = 1G.

Infinitesimal Generators

Recall that Cn was generated by a single element a, which was a rotation
about 2π

n
. As we let n go to infinity, we notice that this rotation gets smaller

and smaller. In this way a very small rotation ϕ→ 0 can be said to generate
the group SO(2).
Let’s look at the Taylor expansion of R(ϕ) around ϕ = 0:

R(ϕ) = R(0) + ϕ · d

dϕ

∣∣∣∣
ϕ=0

R(ϕ) + · · · .
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Calculating the derivative

d

dϕ

∣∣∣∣
ϕ=0

R(ϕ) =
d

dϕ

∣∣∣∣
ϕ=0

[
cosϕ − sinϕ
sinϕ cosϕ

]
=

[
0 −1
1 0

]
=: X

gives
R(ϕ) = 1+ ϕX + · · · .

The matrix ϕX therefore induces an infinitesimal rotation ϕ→ 0. We call X
an infinitesimal generator. We can achieve any finite rotation by “sum-
ming up” this infinitesimal generator X with the exponential function, which
gives us the Taylor expansion of R.

exp(ϕX) =
∞∑

k=0

1

k!
ϕkXk = 1+ ϕX + · · · = R(ϕ)

Lie Algebras

In general, infinitesimal generators are actually not members of the Lie group
they generate. Instead, they form a different kind of structure:
Let γ be a curve in G through 1. An infinitesimal generator X arises by
differentiation of γ(t) at the identity element:

X :=
d

dt

∣∣∣∣
t=0

γ(t) .

We thus consider X to be a tangent vector to G at the identity element.
For higher-dimensional Lie groups, a family of curves γ1, γ2, . . . , γn will gener-
ate several tangential vectors X1,X2, . . . ,Xn. The span of all tangent vectors
is called the tangent space around 1.

Theorem 3.1 The tangential space around the identity element of a Lie
group G forms a Lie algebra g.

As mentioned in Section 1.2, a Lie algebra is an algebra with a Lie-bracket
as the algebra multiplication. For matrix groups and algebras, we use the
commutator as algebra multiplication.

[X,Y] = XY −YX .

Given a Lie algebra element X, we can “generate” a Lie group element by
exponentiation:

exp(tX) = γ(t) ∈ G .
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3.2 The Lie Group SO(3)

Just as SO(2) contained all rotations around the origin of a two-dimensional
plane, we define SO(3) to be the abstract Lie group of all rotations about
the origin of a three-dimensional Euclidean space R3. Similarly, the concrete
Lie group SO(3) is the group of all 3× 3 orthogonal matrices R:

SO(3) :=
{
R ∈ GL(3,R) R>R = 1 detR = 1

}
.

While SO(2) required only one parameter ϕ to characterize a rotation, SO(3)
requires three parameters.

The Lie algebra so(3)

Let R : R3 → SO(3) be some unknown parametrization. How can we cal-
culate the Lie algebra so(3)? Since we don’t have enough information to
directly evaluate

X :=
d

dϕ

∣∣∣∣
ϕ=0

R(ϕ) , ,

we need to look at the Taylor expansion of R(ϕ) for small rotations ϕ → 0

R(ϕ) = 1+ ϕX + · · · .

Since R(ϕ) ∈ SO(3) is orthogonal, we have

1 = R(ϕ)TR(ϕ) = (1+ ϕX + · · · )T(1+ ϕX + · · · )
1 = 1+ ϕ(XT + X) + · · ·
0 = ϕ(XT + X) + · · ·
,

where · · · stands for terms of order ϕ2. Dividing by ϕ and taking the limit
ϕ → 0 gives us

XT = −X .

Any X ∈ so(3) must be antisymmetric, so we define

so(3) :=
{
X ∈ R3×3 XT = −X

}
.
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Euler-Angle Parametrization

One of the many methods of parametrizing SO(3) involves the use of Euler
angles. Any rotation in R3 can be described as a series of rotations ϕ1, ϕ2, ϕ3

about the x-, y-, and z-axes respectively. (Actually, the true Euler-Angle
parametrization is quite different, but it eventually lead to this parametriza-
tion. See Tung, §7.1.) Thus, we can parametrize SO(3) by three angles
ϕ1, ϕ2, ϕ3, and we have a faithful matrix representation

R : R3 → SO(3) R(ϕ) ≡ R(ϕ1, ϕ2, ϕ3) = R3(ϕ3)R2(ϕ2)R1(ϕ1)

R1(ϕ1) ≡ Rx,ϕ1 =

 1 0 0
0 cosϕ1 − sinϕ1

0 sinϕ1 cosϕ1


R2(ϕ2) ≡ Ry,ϕ2 =

 cosϕ2 0 sinϕ2

0 1 0
− sinϕ2 0 cosϕ2


R3(ϕ3) ≡ Rz,ϕ3 =

 cosϕ3 − sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1

 .

Using this parametrization, we can easily calculate the infinitesimal genera-
tors:

X1 =
d

dϕ1

∣∣∣∣
ϕ1=0

R1(ϕ1) =

 0 0 0
0 0 −1
0 1 0


X2 =

d

dϕ2

∣∣∣∣
ϕ2=0

R2(ϕ2) =

 0 0 1
0 0 0
−1 0 0


X3 =

d

dϕ3

∣∣∣∣
ϕ3=0

R3(ϕ3) =

 0 −1 0
1 0 0
0 0 0

 .

These three infinitesimal generators form a basis of the Lie algebra so(3),
which means that any X ∈ so(3) can be written as a linear combination of
each Xi

X = ξiXi ξi ∈ R .

The commutation relations of the Xi are

[X1,X2] = X3 [X2,X3] = X1 [X3,X1] = X2 .
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We can summarize all these relations using abstract index notation

(Xi)
j
k = −εijk (X)i

j = εijkξ
k [Xi,Xj] = ε k

ij Xk . (3.1)

Thus, the structure constants of so(3) are

cijk = εijk .

Axis-Angle Parametrization

Another method of parametrizing SO(3) and so(3) specifies an angle ϕ ∈
[0, π) about an axis of rotation determined by a unit vector n = niei.
The infinitesimal generator Xn ∈ so(3) is given by

Xn ≡ n ·X = nkXk

Xn =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 ,

and a finite rotation Rn,ϕ ∈ SO(3) by an angle ϕ about n is given by

Rn,ϕ = exp (ϕXn) = exp
(
ϕnkXk

)
Rn,ϕ =

 cos ϕ+(n1)2(1−cos ϕ) n1n2(1−cos ϕ)−n3 sin ϕ n1n3(1−cos ϕ)+n2 sin ϕ

n1n2(1−cos ϕ)+n3 sin ϕ cos ϕ+(n2)2(1−cos ϕ) n2n3(1−cos ϕ)−n1 sin ϕ

n1n3(1−cos ϕ)−n2 sin ϕ n2n3(1−cos ϕ)+n1 sin ϕ cos ϕ+(n3)2(1−cos ϕ)

 .

Topology of SO(3)

While SO(2) is simply isometric to the unit circle S1, SO(3) has a trickier
topology. Consider the solid ball of radius π

Bπ :=
{
x ∈ R3 |r| ≤ π

}
.

The axis of rotation corresponds to the direction of x ∈ Bπ, and the angle of
rotation corresponds to its distance from the origin:

n =̂
x

|x|
ϕ =̂ |x|

Rotation by a negative angle would correspond to a point along the same
axis but across the origin. The only issue left is that a rotation ϕ = π and
ϕ = −π are the same. This means that antipodal points on the surface of
the ball are identical—a strange property indeed.
A space constructed in this way is called the real projective space RP 3.
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Representation of SO(3) and so(3) on Wave Functions

We now turn our attention to a common representation used in quantum
mechanics. Let H ≡ L2(R3, dµ) be the Hilbert space of quantum mechanical
wave functions. We define the representation T : SO(3) → GL(H) by

T(R) ≡ R̂
(
R̂ψ

)
(x) := ψ(R−1 · x) R ∈ SO(3) .

This equation simply says that rotating a wave function in one direction is
the same as rotating the coordinate axes in the other direction. Notice that
this representation is faithful. Thus, we have an identical copy of SO(3) as a
subgroup of GL(H).
We can use T to determine the Lie algebra representation L : so(3) → GL(H)

L(Xn) ≡ X̂n

(
X̂nψ

)
(x) := ?

First, we calculate X̂3 by using the definition of the infinitesimal generator

X̂3 =
d

dϕ

∣∣∣∣
ϕ=0

R̂3,ϕ = lim
ϕ→0

R̂3,ϕ − R̂3,0

ϕ
= lim

ϕ→0

R̂3,ϕ − 1

ϕ
.

With R−1 ≡ R3,−ϕ

R3,−ϕ · x =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 x
y
z


=

 x cosϕ+ y sinϕ
y cosϕ− x sinϕ

z

 =

 x+ yϕ+ · · ·
y − xϕ+ · · ·

z

 ,

we calculate R̂3,ϕ:

R̂3,ϕψ(x) = ψ(R3,−ϕ · x)

= ψ(x+ yϕ+ · · · , y − xϕ+ · · · , z)
= ψ(x+ yϕ+ · · · , y − xϕ+ · · · , z)|ϕ=0 +

+ ϕ · dψ(x+ yϕ+ · · · , y − xϕ+ · · · , z)
dϕ

∣∣∣∣
ϕ=0

+ · · ·

= ψ(x, y, z) + ϕ ·
(
∂ψ(x, y, z)

∂x
y − ∂ψ(x, y, z)

∂y
x

)
+ · · ·

⇒ R̂3,ϕ = 1̂+ ϕ

(
y
∂

∂x
− x

∂

∂y

)
+ · · · ,
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where · · · refers to terms of order ϕ2. Thus, we have for X̂3:

X̂3 = lim
ϕ→0

R̂3,ϕ − 1

ϕ
= lim

ϕ→0

1̂+ ϕ
(
y ∂

∂x
− x ∂

∂y

)
+ · · · − 1̂

ϕ

X̂3 = y
∂

∂x
− x

∂

∂y
.

Similar calculations for rotations about the x- and y- axes give

X̂1 = z
∂

∂y
− y

∂

∂z
, X̂2 = x

∂

∂z
− z

∂

∂x
.

We can thus summarize these results as

X̂i = −εijkxj ∂

∂xk
X̂ = −x×∇ ,

where X̂ is the vector operator

X̂ :=
(
X̂1, X̂2, X̂3

)
.

One can also calculate the commutation relations for the operators X̂i, which
are [

X̂i, X̂j

]
= ε k

ij X̂k .

Comparing X̂ to the orbital angular momentum operator L̂ = −i~x×∇, we
thus have

L̂ = i~ X̂ .

That is, the orbital angular momentum operator L̂ is identical to the operator
X̂ that represents the Lie algebra so(3), up to a factor i~. We will investigate
this relationship further on in the next chapter.

3.3 The Lie Group SU(2)

Recall that we defined the special unitary group SU(2) as the group of all
2× 2 unitary matrices with determinant 1:

SU(2) :=
{
M ∈ GL(2,C) M†M = 1 detM = 1

}
.

This group is a Lie group as well, and can be parametrized by two complex
numbers a, b as

U(a, b) =

[
a −b
b a

]
.
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The condition det U(a, b) yields |a|2 + |b|2 = 1. By writing

a := w + ix b := y + iz

with w, x, y, z ∈ R, we see that the condition det U(a, b) = 1 delivers

w2 + x2 + y2 + z2 = 1 .

Thus, the Lie Group SU(2) is isomorphic to S3, the three-dimensional unit
sphere in R4:

SU(2) ∼= S3 .

The Lie algebra su(2)

We know that A ∈ su(2) implies

exp(tA) ∈ SU(2)

for all t ∈ R. This leads us to

i) 1 = exp(tA)† exp(tA) ii) 1 = det(exp(tA))

for all t ∈ R. Differentiating condition i) at t = 0 gives us

0 = A† exp(tA)† exp(tA)
∣∣
t=0

+ exp(tA)†A exp(tA)
∣∣
t=0

0 = A† + A .

Thus, A must be anti-hermitean: A† = −A. Condition ii) gives us

1 = det(exp tA) = exp(tr tA) = exp(t tr A) .

Differentiation yields that A must be traceless: tr A = 0. We can therefore
define

su(2) :=
{
A ∈ C2×2 A† = −A tr A = 0

}
.

A basis for su(2) is given by the matrices si

s1 = −1

2

[
0 i
i 0

]
s2 = −1

2

[
0 1
−1 0

]
s3 = −1

2

[
i 0
0 −i

]
su(2) = span {s1, s2, s3}

so that any A ∈ su(2) is given by

aisi ai ∈ R .
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The commutation relations of si are given by

[si, sj] = ε k
ij sk .

Thus, the structure constants of su(2) are

ckij = ε k
ij .

Notice that these are the same structure constants as the Lie algebra so(3).
It should come as no surprise that these two algebras are actually identical.
We will investigate this point later on in this chapter.

The Vector space H2

While the matrices si span (over R) the vector space su(2) of 2 × 2 anti-
hermitean matrices, the Pauli matrices

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
span (also over R) the space of 2× 2 traceless hermitean matrices

H2 :=
{
M ∈ C2×2 M† = M tr M = 0

}
H2 = span {σ1,σ2,σ3} .

We can regard H2 as a real, three-dimensional vector space by considering
the isomorphism f : R3 → H2 defined by

f(ei) = σi .

In this way, we can think of any 2× 2 hermitean matrix σ as a real vector x

x = xiei σ = f(x) = xiσi .

Rotating vectors in H2 and R3

Theorem 3.2 To rotate a vector σ in H2, we can use a 2×2 unitary matrix
U ∈ SU(2) in the following way:

σ 7→ UσU† .
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σ

UσU
†

Figure 3.2: Rotating a vector σ

We prove this theorem by considering the scalar product

σ · ς := 1
2
tr σς ,

which defines the concept of an angle on H2. We show

1. UσU† is still an element of H2:(
UσU†)† = UσU† tr UσU† = tr σU†U = tr σ = 0 .

2. The original vector σ and the rotated vector UσU† have the same
length:

UσU† ·UςU† = 1
2
tr UσU†UςU† = 1

2
tr σς = σ · ς

ς = σ ⇒
∥∥UσU†∥∥ = ‖σ‖ ,

where the norm defines the concept of length on H2. Notice that we
have also shown that the rotation σ 7→ UσU† is isometric.

Axis-Angle Parametrization

We can parametrize SU(2) and su(2) by specifying an angle ϕ ∈ [0, π] and a
unit vector n = niσi in H2. The infinitesimal generator sn ∈ su(2) is given
by

sn ≡ n · s = nisi

sn = −1

2

[
in3 in1 + n2

in1 − n2 −in3

]
,



CHAPTER 3. ROTATIONS 49

and a finite matrix Un,ϕ ∈ SU(2) is given by

Un,ϕ = exp(ϕsn) = exp(ϕnksk) = exp(−ϕi

2
σk)

Un,ϕ = 1 cos
ϕ

2
− inkσk sin

ϕ

2

Un,ϕ =

[
cos ϕ

2
− in3 sin ϕ

2
− sin ϕ

2
(in1 + n2)

− sin ϕ
2
(in1 − n2) cos ϕ

2
+ in3 sin ϕ

2

]
,

Lie Group Homomorphism SU(2) → SO(3)

Consider a rotation ϕ around the “z-axis” of H2 (n = σ3):

UσU† ≡ Ue3,ϕσUe3,ϕ
† = Ue3,ϕσUe3,−ϕ

=

[
e−

iϕ
2 0

0 e
iϕ
2

]
(xσ1 + yσ2 + zσ3)

[
e

iϕ
2 0

0 e−
iϕ
2

]

= x

[
0 e−iϕ

eiϕ 0

]
+ iy

[
0 −e−iϕ

eiϕ 0

]
+ z

[
1 0
0 −1

]
= (x cosϕ− y sinϕ)σ1 + (x sinϕ+ y cosϕ)σ2 + zσ3

.

We see that rotating σ ∈ H2 around the σ3-axis using U ∈ SU(2)

σ 7→ UσU†

 x
y
z

 7→

 x cosϕ− y sinϕ
x sinϕ+ y cosϕ

z


is identical to rotating x ∈ R3 around the e3-axis using R ∈ SO(3)

x 7→ Rx

 x
y
z

 7→

 x cosϕ− y sinϕ
x sinϕ+ y cosϕ

z

 .

We see that the groups SU(2) and SO(3), which may not seem similar at
first sight, are actually quite intimately related. We express this relationship
concretely in the form of a homomorphism Φ : SU(2) → SO(3)

Rx = Φ(U)x := f−1
(
Uf(x)U†) ,

where f is the isomorphism f(x) = σ between H2 and R3. (In this case f is
also called an intertwiner.)
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σ

UσU
†

R
3

R
3

x

H2 H2

Rx

f

U · U
†

f−1

R

Figure 3.3: A long way and a short way of producing the same rotation.
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Theorem 3.3 We have

1. Φ is surjective

2. ker Φ = {1,−1} =: Z2

Because of ii), we see that Φ is not injective. In fact

Φ(−U) = Φ(−1)Φ(U) = Φ(U) = R .

That is, every element R ∈ SO(3) is mapped by two elements of SU(2):

Φ−1(R) = {U,−U} .

Thus, we say that Φ is a two-fold covering.
Another result of ii), as well as theorem 1.4 is

SU(2)�Z2
∼= SO(3) .

Although SU(2) and SO(3) are not globally isomorphic, they are locally iso-
morphic. This concept manifests itself in their Lie algebras.

Lie Algebra Isomorphism su(2) → so(3)

Recall that the Lie algebras su(2) and so(3) have the same structure con-
stants. This suggests that these algebras are isomorphic. We can actually
show this by using the group homomorphism Φ : SU(2) → SO(3) to construct
an isomorphism φ : su(2) → so(3).
First, we express the homomorphism Φ using abstract index notation

f(Rx) = f(Φ(U)x) = Uf(x)U†

Ri
jx

jσi = UxjσjU
† .

We differentiate this equation at t = 0, noting that d
dt

∣∣
t=0

R = X ∈ so(3),

U|t=0 = 1, and d
dt

∣∣
t=0

U = A = aisi ∈ su(2), we have

Xi
jx

jσi = Axjσj + xjσjA
†

xjXi
jσi = xj(Aσj − σjA)

= xj[A,σj] = xj[aisi,σj] = − i
2
xjai[σi,σj]

= − i
2
xjai

(
2iε k

ij σk

)
= xjaiε k

ij σk = xj
(
−akε i

kj

)
σi

=: xjφ(A) i
j σi .
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We have thus found the isomorphism φ : su(2) → so(3)

Xi
j := φ(A)i

j = akεijk

Notice that this isomorphism coincides with equation 3.1 with ak = ξk.
Thus, the Lie algebras su(2) and so(3) are isomorphic. Because Lie algebras
are locally identical to their corresponding Lie groups, we can say that SU(2)
and SO(3) are locally isomorphic.
Notice also that these Lie algebras have the same structure constants as
the Lie algebra (R3,×) introduced in chapter 1. These algebras are thus
isomorphic.

Representations of SO(3) and SU(2)

If we are given some representation D : SO(3) → GL(V ), we can uniquely
define a representation D̃ : SU(2) → GL(V ) by

D̃(U) := D(Φ(U)) .

However, if we this time let D̃ be given, then the definition

D(R) := D̃(Φ−1(R))

is not unique, since Φ−1(R) = ±U, which gives us

D(R) = D̃(±U) = D̃(±1)D̃(U) ,

and we end up with two different kinds of representations D̃:

1. D̃(−1) = +1
This kind of representation leads us to a unique, singly-defined repre-
sentation D of SO(3)

D(R) = D̃(±1)D̃(U) = +1D̃(U) .

This kind of representation is used for orbital angular momentum L̂.

2. D̃(−1) = −1
This kind of representation leads us to a doubly-defined “representa-
tion” D of SO(3)

D(R) = D̃(±1)D̃(U) = ±1D̃(U) = ±D̃(U) .

This kind of representation is used for spin angular momentum Ŝ and
is referred to as a spinor representation of SO(3). Notice, however,
that it is not a representation in the mathematical sense.
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Angular Momentum

Recall from quantum mechanics that any angular momentum operator, whether
orbital Ĵ = L̂, spin Ĵ = Ŝ, or combined Ĵ =

∑
L̂ +

∑
Ŝ must satisfy the

following commutation relations:[
Ĵi, Ĵj

]
= i~εijkĴk .

If we replace Ĵi by some hypothetical operator i~X̂i, we see that[
(i~)X̂i, (i~)X̂j

]
= i~εijk(i~)X̂k[

X̂i, X̂j

]
= εijkX̂k .

That is, these operators X̂i have the structure constants εijk and thus form

an su(2) ∼= so(3) Lie algebra. Thus, all angular momentum operators Ĵi are
simply operators X̂i which are given by a representation of su(2) or so(3), up
to a factor i~.
We have already encountered a situation like this in the last chapter. Recall
that the orbital angular momentum operator L̂ was given by

L̂i = i~L(Xi) ≡ i~X̂i ,

where L is an operator representation of so(3). The operators X̂i, which
generate an so(3) Lie-algebra, are equal to the orbital angular momentum
operators L̂i up to a factor i~.
This script follows the convention

QM = i~ GT.

This factor i~ provides the link between group-theoretical operators, which
are produced by representations of Lie-groups and Lie-algebras, and quantum-
mechanical operators, which correspond to physically meaningful quantities.

53



CHAPTER 4. ANGULAR MOMENTUM 54

(Beware of varying conventions! Some physics-oriented texts split up this
factor i~ and conceal the complex number i in some distant definition. For

instance, Jones defines the infinitesimal generator as: X := −i d
dϕ

∣∣∣
ϕ=0

R(ϕ),

which convinces the reader that QM = ~ GT. Cornwell uses an entirely
different convention, QM = i~ GT, which results in left-handed rotations.
The convention used in this script matches that of Penrose.)

4.1 Spin Angular Momentum

The goal of this section is to find the irreducible representations of su(2).
Just as so(3) produced orbital angular momentum operators, we will soon
see that su(2) produces spin angular momentum operators.

The Lie-Algebra sl(2,C)

One small but vital detail that is often left out in many physics-oriented texts
is the consideration of the Lie-algebra sl(2,C):

sl(2,C) :=
{
M ∈ C2×2 tr M = 0

}
,

which is the Lie-algebra of the Lie-group SL(2,C). It turns out that sl(2,C)
can be generated by complex linear combinations of the matrices si:

sl(2,C) =
{
M ∈ C2×2 M = αisi αi ∈ C

}
≡ span

C
{si}3

i=1 .

Comparing this to su(2)

su(2) = span
R
{si}3

i=1 ,

we clearly see that su(2) ⊂ sl(2,C). Thus, any representation T of sl(2,C) is
also a representation of su(2); all we need to do is restrict the domain of T.

The Casimir Operator Ĵ
2

From the angular momentum operators Ĵi we can construct the operator

Ĵ
2

:= ĴiĴi ≡ Ĵ2
1 + Ĵ2

2 + Ĵ2
3 ,
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which commutes with all operators Ĵi:[
Ĵi, Ĵ

2
]

=
[
Ĵi, Ĵj Ĵj

]
=

[
Ĵi, Ĵj

]
Ĵj + Ĵj

[
Ĵi, Ĵj

]
= i~εijkĴkĴj + i~εijkĴj Ĵk

= 0 .

This property makes Ĵ
2

a Casimir operator. Although it is not an ele-
ment of the Lie algebra sl(2,C), we can still use it to help us construct an
irreducible basis.
Since we’re interested in finding an irreducible representation of sl(2,C), we
apply Schur’s first lemma (Theorem 2.5) and notice that

Ĵ
2

= λ1̂ .

That is, Ĵ
2

has only one eigenvalue λ ∈ R, which needs to be determined.

Since Ĵ
2

and Ĵ3 commute, we have a system
{
Ĵ

2
, Ĵ3

}
of commuting observ-

ables. There is a basis of common eigenvectors, which we denote by |λ m〉,
where m stands for the different eigenvalues of Ĵ3:

Ĵ
2
|λ m〉 = ~2λ |λ m〉 Ĵ3 |λ m〉 = ~m |λ m〉 . .

The Eigenvalue Ladder

In order to determine the eigenvalues λ and m, we define the ladder oper-
ators

Ĵ+ := Ĵ1 + iĴ2 Ĵ− := Ĵ1 − iĴ2

which satisfy the following commutation relations:[
Ĵ+, Ĵ−

]
= 2~Ĵ3

[
Ĵ3, Ĵ±

]
= ±~Ĵ± .

(Notice that the ladder operators are constructed by complex linear combi-
nations of the basis operators Ĵi—we cannot avoid sl(2,C).) The reason for
the term “ladder operator” can be seen if we consider some eigenvalue m of
Ĵ3:

Ĵ3 |λ m〉 = ~m |λ m〉

Operating both sides by Ĵ+ gives

Ĵ+Ĵ3 |λ m〉 = ~mĴ+ |λ m〉(
Ĵ3Ĵ+ − ~Ĵ+

)
|λ m〉 = ~mĴ+ |λ m〉

Ĵ3 Ĵ+ |λ m〉 = ~ (m+ 1) Ĵ+ |λ m〉 . .
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While |λ m〉 is an eigenvector with eigenvalue m, we see that Ĵ+ |λ m〉 is
also an eigenvector, but with eigenvalue m + 1. Similarly, Ĵ− |λ m〉 is also
an eigenvector with eigenvalue m − 1. We can thus imagine a ladder that
represents the eigenvectors and eigenvalues of Ĵ3, where the ladder operators
Ĵ± let us “climb” up and down.

m + 1

m

m − 1

.

.

.

.

.

.

Ĵ+

Ĵ
−

Figure 4.1: Climbing up and down with the ladder operators

Since V is finite-dimensional, we can expect this ladder to be of finite size.
Thus, there exists an eigenvector

|λ M〉

with the largest eigenvalue possible M , which is represented by the topmost
rung of the ladder. This eigenvector is sometimes referred to as the highest-
weight vector.

.

.

.

Ĵ
−

M

M − 1

Figure 4.2: The highest-weight vector, sitting at the top of the ladder

If we try to operate with Ĵ+ again, we get

Ĵ+ |λ M〉 = 0 ,

since otherwise, we would get an eigenvalue M + 1, which would be higher
than the maximum eigenvalue, leading to contradiction. Operating the above
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equation with Ĵ− gives:

Ĵ−Ĵ+ |λ M〉 = 0(
Ĵ2

1 + Ĵ2
2 − ~Ĵ3

)
|λ M〉 = 0(

Ĵ
2
− Ĵ2

3 − ~Ĵ3

)
|λ M〉 = 0(

λ−M2 −M
)
|λ M〉 = 0

⇒ M(M + 1) = λ

.

We see that the sole eigenvalue λ of the Casimir operator Ĵ
2

is given by
M (M + 1).
From the highest-weight vector |λ M〉, we climb down to the lowest-weight
vector |λ µ〉 by N applications of Ĵ−.

M

µ

�

Ĵ
−

�N
.

.

.

.

.

.

.

.

.

Figure 4.3: Climbing down to the lowest-weight vector

Ĵ−
N
|λ M〉 = ~N |λ µ〉 µ = M −N N ∈ N0

Just like with the highest-weight vector, applying Ĵ− on the lowest-weight
vector gives us zero. We apply Ĵ+ and see that
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Ĵ− |λ µ〉 = 0

Ĵ+Ĵ− |λ µ〉 = 0(
Ĵ

2
− Ĵ2

3 + ~Ĵ3

)
|λ µ〉 = 0(

λ− µ2 + µ
)
|λ µ〉 = 0

⇒ M(M + 1)− (M −N)2 + (M −N) = 0

M + 2NM −N2 +M −N = 0

2M(N + 1) = N(N + 1)

.

Since N ∈ N0, we see that the maximum eigenvalue M = N
2

can only take
on non-negative integer and half-integer values:

M = N
2

= 0, 1
2
, 1, 3

2
, . . . .

The minimum eigenvalue µ is given by

µ = M −N = −N
2

= 0,−1
2
,−1,−3

2
, . . . .

We thus see that the eigenvalues are entirely determined by M , which we
will instead denote by j, which is known as the spin number. All possible
eigenvalues m are thus given by

−j ≤ m ≤ j j = 0,−1
2
,−1,−3

2
, . . . .

.

.

.

.

.

.

|j m�

|j − j�

|j j�

Figure 4.4: The complete eigenvalue ladder
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The irreducible representations of su(2)

Notice that the representations given in the following theorems are of sl(2,C),
and consequently of su(2) by restricting the domain, as mentioned in the
subsection The Lie-Algebra sl(2,C).

Theorem 4.1 The irreducible representations of sl(2,C) are given by a num-
ber j = 0, 1

2
, 1, 3

2
, . . . . They have dimension 2j + 1 and there exists a basis

|j m〉 ,m = −j, . . . , j such that

Ĵ3 |j m〉 = ~m |j m〉
Ĵ± |j m〉 = ~

√
j(j + 1)−m(m± 1) |j,m± 1〉

Ĵ
2
|j m〉 = ~2j(j + 1) |j m〉 ,

where Ĵ1 = 1
2

(
Ĵ+ + Ĵ−

)
and Ĵ2 = 1

2i

(
Ĵ+ − Ĵ−

)
. The number j is called the

spin number of the representation, and the carrier space S is called the
spinor space.

Proof: The representations are indeed irreducible; it suffices to notice that

S = span

{(
Ĵ−

)k

|j j〉
}2j+1

k=0

.

Conversely, let an irreducible representation be given. Since Ĵ
2

and Ĵ3 com-
mute, there exists a basis of common eigenvectors. The argument given in
the last subsection gives the basis {|j m〉}.
We now calculate the coefficients of Ĵ±:

Ĵ± |j m〉 = c± |j,m± 1〉

We choose a scalar product so that |j m〉 are orthonormal:

|c±|2 =
〈
j m

∣∣∣Ĵ∓Ĵ±

∣∣∣m j
〉

=
〈
j m

∣∣∣(Ĵ
2
− Ĵ2

3 ∓ ~J3

)∣∣∣m j
〉

= ~2 (j(j + 1)−m(m± 1)) .

The value c± can be determined uniquely, except for some phase factor eiα

which we set to one. (This is in accordance with the Condon-Shortley con-
vention.) Thus

c± = ~
√
j(j + 1)−m(m± 1)
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�

The above representations could be denoted explicitly by Tj so that

Ĵi = i~Tj(si) i = 1, 2, 3 j = 0, 1
2
, 1, 3

2
, . . . .

However, the exact form of the right-hand side of this equation is subject to
convention. More important are the operators Ĵi, which are independent of
convention and appear in every text as given in Theorem (4.1).
We can start with the definitions given in Chapter 2 to check that the rep-
resentations T0,T

1
2 ,T1, . . . are indeed irreducible. We start by breaking S

down into eigenspaces Sm

S =

j⊕
m=−j

Sm Sm = span
C
{|j m〉} .

If one of the Tj, which we briefly denote by T, were reducible, then there
would exist a nontrivial subspace Sm ∈ S that is invariant under T for all
si ∈ su(2)

T(s1) |j m〉
?
∈ Sm T(s2) |j m〉

?
∈ Sm T(s3) |j m〉

?
∈ Sm

We can see that this is not the case by applying Theorem(4.1):

T(s1) |j m〉 =
Ĵ1

i~
|j m〉 = · · · |j,m− 1〉+ · · · |j,m+ 1〉 ∈ Sm−1 ⊕ Sm+1

T(s2) |j m〉 =
Ĵ2

i~
|j m〉 = · · · |j,m− 1〉+ · · · |j,m+ 1〉 ∈ Sm−1 ⊕ Sm+1

T(s3) |j m〉 =
Ĵ3

i~
|j m〉 = · · · |jm〉 ∈ Sm

This argument actually does not suffice, since there could be other subspaces
that might be invariant under T. However, the short argument given in the
proof indeed guarantees that T is irreducible.

Theorem 4.2 The irreducible matrix representations Dj of su(2) are given
by the representations with spin j under the basis {|jm〉} = {em−j+1}. The
matrices

Ji = i~Dj(si)
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are explicitly given by

(J1)
m′

m =
~
2

√
j(j + 1)−m(m+ 1)δm′

m+1 +
~
2

√
j(j + 1)−m(m− 1)δm′

m−1

(J2)
m′

m =
~
2i

√
j(j + 1)−m(m+ 1)δm′

m+1 −
~
2i

√
j(j + 1)−m(m− 1)δm′

m−1

(J3)
m′

m = ~mδm′

m

We can write down these matrices explicitly for two simple cases.
Case 1: j = 1

2
This case corresponds to a particle of spin 1

2
. The spin

angular momentum operator Ĵ ≡ Ŝ is given by the irreducible representation
T

1
2 of su(2):

Ŝi = i~T
1
2 (si) . .

The spinor space S is of dimension 2 and spanned by the “spin up” and “spin
down” eigenstates of the spin operator Ŝ3.∣∣1

2
1
2

〉
≡ |+〉 = e1 =

[
1
0

]
∣∣1
2
− 1

2

〉
≡ |−〉 = e2 =

[
0
1

]

|+�

|−�

Figure 4.5: The spinor space of dimension two

Under this basis, the spin matrices Si = i~D
1
2 (si) take on the form

S1 =
~
2

[
0 1
1 0

]
=

~
2
σ1

S2 =
~
2

[
0 −i
i 0

]
=

~
2
σ2

S3 =
~
2

[
1 0
0 −1

]
=

~
2
σ3 ,
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Notice that they are identical to the Pauli matrices up to a real, dimen-
sional factor. Furthermore, we see that the two-dimensional matrix repre-
sentation D

1
2 is simply the identity mapping, since mapping an algebra of

two-dimensional matrices into 2j+1 = 2-dimensional matrices requires little
effort.

D
1
2 (si) =

1

i~
Si = − i

2
σi = si .

With sn = nksk as the infinitesimal generator of the axis-angle parametriza-
tion, we have

D
1
2 (sn) = sn .

Case 2: j = 1 This case corresponds to a particle of spin 1. The spin angular
momentum operator is given by

Ŝi = i~T1(si) .

The spinor space S is of dimension three and spanned by the triplet of eigen-
states of the operator Ŝ3.

|1 1〉 = e1 =

 1
0
0


|1 0〉 = e2 =

 0
1
0


|1 − 1〉 = e3 =

 0
0
1



|1 1�

|1 0�

|1 − 1�

Figure 4.6: The spinor space of dimension three
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Under this basis, we get the following spin matrices Si:

S1 =
~
√

2

2

 0 1 0
1 0 1
0 1 0


S2 =

~
√

2

2i

 0 1 0
−1 0 1
0 −1 0


S3 = ~

 1 0 0
0 0 0
0 0 −1

 .

A few simple calculations show us that S1,S2,S3 are equivalent to the in-
finitesimal generators X1,X2,X3 of SO(3).

4.2 Orbital Angular Momentum and Rota-

tional Symmetry

We can use the irreducible representations Dj of su(2) to obtain irreducible
representations Dj of SO(3). We do this in two steps

Step 1: From su(2) to SU(2)

We can obtain a representation D̃j of SU(2) by exponentiating the represen-
tation Dj of su(2)

D̃j(U) = D̃j(expϕs) = exp(ϕDj(s)) .

This works because SU(2) is simply connected. We can solve the above
exponential for the two special cases from the last subsection:
Case 1: j = 1

2
Just as D

1
2 (s) = s, we see that D̃

1
2 (U) = U:

D̃
1
2 (Un,ϕ) = exp(ϕnkD

1
2 (sk)) = exp(ϕnksk)

= Un,ϕ =

[
cos ϕ

2
− in3 sin ϕ

2
− sin ϕ

2
(in1 + n2)

− sin ϕ
2
(in1 − n2) cos ϕ

2
+ in3 sin ϕ

2

]
.

Case 2: j = 1 The three-dimensional representation D̃j of SU(2) is given
by

D̃1(Un,ϕ) = exp(ϕnkD1(sk)) .
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Exponentiating these matrices proves to be a daunting task, and the results
themselves are unimportant. However, we can give an explicit result for a
rotation ϕ around the z-axis:

D̃1(Ue3,ϕ) = exp(ϕD1(s3))

= exp

−iϕ

 1 0 0
0 0 0
0 0 −1

 =

 e−iϕ 0 0
0 1 0
0 0 eiϕ

 .

We see that the trace of this matrix is

χ(Ue3,ϕ) ≡ tr D̃1(Ue3,ϕ) = 1 + 2 cosϕ ,

which is the same as the trace of the matrix Re3,ϕ ∈ SO(3):

Re3,ϕ =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 χ(Re3,ϕ) ≡ tr Rn,ϕ = 1 + 2 cosϕ .

Similar calculations hold for the x- and y-axes. Thus, the three-dimensional
matrix representation D̃1 of SU(2) is equivalent to the three-dimensional
matrix representation R of SO(3).

Step 2: From SU(2) to SO(3)

As described in the last chapter, we can define a representation D of SO(3)
by means of a representation D̃ of SU(2) by

D(R) := D̃(Φ−1(R)) .

However, there are two different types of representations D̃ of SU(2)

1. D̃(−1) = +1 This kind of representation defines a single-valued rep-
resentation D of SO(3) by

D(R) := D̃(U)

2. D̃(−1) = −1 This kind of representation does not give a well-defined
representation D of SO(3), since

D(R) := ±D̃(U)
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Case 1: j = 1
2

We see that

D̃
1
2 (−1) = D̃

1
2 (Ue3 , 2π) = −1 .

By the above arguments, we see that we can’t rely on D̃
1
2 to produce a

well-defined representation D
1
2 . Hence, it is referred to as a “double-valued”

representation.
Case 2: j = 1 We see that

D̃1(−1) = D̃1(Ue3,2π) = 1 .

Therefore, we can define a representation D1 of SO(3) by

D1(R) := D̃1(U) .

We just saw that this representation is equivalent to the standard matrix
representation R of SO(3):

D1(Rn,ϕ) = exp(ϕD1(sn)) ∼ R(n, ϕ) ≡ Rn,ϕ .

Theorem 4.3 A matrix representation D̃j of SU(2) defines a single-valued
matrix representation Dj of SO(3) if the spin number j is a natural number,
that is j = 0, 1, 2, . . .

Proof: Under the axis-angle parametrization of SU(2), we see that

−1 = Ue3,2π .

Therefore, with Dj(s3)
m′

m = 1
i~(J3)

m′

m = −imδm′

m, we have

D̃j(−1) = D̃j(Ue3,2π) = D̃j(exp(2πs3)) = exp(2πDj(s3))

= exp−2πi


j 0

j − 1
. . .

0 −j

 =


e2πij 0

e2πi(j−1)

. . .

0 e−2πij


= (−1)2j

1

.

As just described, a representation D is well-defined by D(R) := D̃(U) if
D̃(−1) = 1. This is the case for D̃j if j = 0, 1, 2, . . .

�
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Basis of Irreducible Functions of SO(3)

Recall the representation T of SO(3) on the space L2(R3, dµ) given by

T(R) ≡ R̂ R̂ψ(x) := ψ(R−1 · x) .

This representation can be reduced into a direct sum of irreducible represen-
tations Tl

T =
∞⊕
l=0

Tl .

Reducing T into irreducible components requires finding subspaces Sl of the
carrier space L2(R3, dµ) that are invariant under Tl. The bases of these sub-
spaces are given by the eigenvectors |l m〉 expressed as spatial wavefunctions:

ψlm(x) = 〈x |l m〉 .

In order to calculate these basis functions ψlm, we take a detour and consider
the representations of so(3).

Theorem 4.4 Let T be a representation of a Lie Group G, and L be a repre-
sentation of the Lie algebra g, both acting on a carrier space V . A subspace
S ⊆ V is invariant under T if and only if it is invariant under L.

Therefore, we can instead reduce the representation L of so(3)

L(Xi) = −(x×∇)i

into a direct sum of irreducible representations Tl of su(2) ∼= so(3) given in
Theorem 4.1:

L =
∞⊕
l=0

Tl .

We begin by expressing the operators L(Xi) in spherical coordinates

L̂1 = i~L(X1) = i~
(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
L̂2 = i~L(X2) = i~

(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
L̂3 = i~L(X3) = −i~

∂

∂ϕ
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By Theorem 4.1, we know how the operators L̂i = i~L(Xi) = i~
⊕

T l(si) act
on the eigenvectors |l m〉

i~Tl(s3) |l m〉 = L̂3 |l m〉 = ~m |l m〉
i~

(
Tl(s1)− iTl(s2)

)
|l m〉 = L̂− |l m〉 = ~

√
l(l + 1)−m(m− 1) |l m− 1〉

~2
(
Tl(s1)

2 + Tl(s2)
2 + Tl(s3)

2
)
|l m〉 = L̂

2
|l m〉 = ~2l(l + 1) |l m〉 .

Formally, this is achieved by〈
x

∣∣∣L̂i

∣∣∣ l m〉
=

〈
x

∣∣∣∣L̂i

∫
d3x′

∣∣∣∣x′〉 〈x′ |l m〉 =
〈
x

∣∣∣L̂i

∣∣∣x〉
〈x |l m〉 ≡ L̂iψlm(x) ,

where the new L̂i are the corresponding operators acting on wavefunctions
ψlm rather than abstract eigenvectors |l m〉. Expressing these equations as
spatial wavefunctions gives

L̂3ψlm = ~mψlm

L̂−ψlm = ~
√
l(l + 1)−m(m− 1)ψl(m−1)

L̂
2
ψlm = ~l(l + 1)ψlm

We now take the operators L̂i in their spherical-coordinate form and plug
them into the above equations:

−i
∂

∂ϕ
ψlm = mψlm (4.1)

e−iϕ

(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
ψlm =

√
l(l + 1)−m(m− 1)ψl(m−1)

(4.2)[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2

]
ψlm = l(l + 1)ψlm . (4.3)

Equation 1 has the solution

ψlm(r, θ, ϕ) = eimϕF (r, θ) .

Putting this into Equation 2 gives[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− m2

sin2 ϑ

]
F (r, θ) = l(l + 1)F (r, θ) ,

which is the associated Legendre equation, whose solution is

F (r, θ) = Plm(cos θ)f(r) ,
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where f is some function of r only, and Plm(ξ) is the associated Legendre
function. We now define the functions

Ylm(θ, ϕ) = (−1)m

√
(2j + 1)(j −m)!

4π(j +m)!
eimϕPlm(cos θ) ,

which are called the spherical harmonics. (The actual steps leading to the
spherical harmonics Ylm and the general solution ψlm are long and cumber-
some. A satisfying derivation can be found in any decent book on quantum
mechanics and/or differential equations.) The solution to equations 1-3 is
then

ψlm(r, θ, ϕ) = f(r)Ylm(θ, ϕ) .

Partial Wave Decomposition

The above equation reflects the fact that we can split up a wavefunction
ψ ∈ L2(R3, dµ) into radial and angular parts:

L2(R3, dµ) = L2(R+, dr)⊗ L2(S2, sin θdθdϕ)

ψlm = f ⊗ Ylm .

We also see that Ylm serves as an orthonormal basis for L2(S2, sin θdθdϕ),
that is, any φ ∈ L2(S2) can be written as a linear combination of Ylm

φ = αlmYlm

and thus, any ψ ∈ L2(R3) can be written as

ψ = f ⊗ φ = f ⊗ αlmYlm

ψ(r, θ, ϕ) = αlmf(r)Ylm(θ, ϕ) .

To be precise, the representation T : SO(3) → GL(L2(R3)) can also be split
up as above:

T(R) ≡ R̂′ = 1⊗ R̂ ,

with R̂′ : L2(R3) → L2(R3) and R̂ : L2(S2) → L2(S2). This reflects the fact
that a rotation operator R̂ leaves the radial part of a wavefunction alone.
A subspace Sl ⊂ L2(S2) invariant under T l is thus given by

Sl = span {Ylm}l
m=−l .

For instance, the subspace

S1 = span
{
sin θe−iϕ, cos θ, sin θeiϕ

}
is invariant under L and Tl so that for all angular momentum operators
L̂1, L̂2, L̂3, we have

φ ∈ S1 ⇒ L̂iφ ∈ S1 .
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Spherically Symmetric Potentials

Consider the Hamilton operator

Ĥ = −~2∆ + V (r) ,

where the potential V is spherically symmetric and only depends on the
radius r. The following commutation relations then hold:[

Ĥ, L̂
2
]

= 0
[
Ĥ, L̂3

]
= 0 ,

making Ĥ, L̂
2
, L̂3 a system of commuting observables, and thus the state

space H = L2(R3, dµ) is spanned by a basis of eigenvectors |α l m〉 where

〈x |α l m〉 = fα(r)Ylm(θ, ϕ) .

Here, α stands for the radial quantum numbers (e.g. energy).



Chapter 5

Adding Angular Momenta

Tensor Product of Lie-Group Representations

Recall from quantum mechanics that two kinematically independent systems
with state spaces H1 and H2 can be looked at as one unified system with
state space

H = H1 ⊗H2 .

An element |ψ1 ψ2〉 ≡ |ψ1〉 ⊗ |ψ2〉 ∈ H is given by sums
∑

i ψ1i ⊗ ψ2i.

The tensor product of two operators Â1 and Â2 on H1 and H2 is defined by(
Â1 ⊗ Â2

)
|ψ1〉 ⊗ |ψ2〉 := Â1 |ψ1〉 ⊗ Â2 |ψ2〉 .

If these operators are given by some irreducible representations D1,D2 of a
group G

Âi = i~Di(t) ,

then a tensor product between Lie-group representations is defined by(
D1 ⊗D2

)
(t) |ψ1〉 ⊗ |ψ2〉 := D1(t) |ψ1〉 ⊗D2(t) |ψ2〉 .

Clebsch-Gordan Series for SU(2) and SO(3)

A tensor product of irreducible representations can be expanded as a direct
sum of irreducible representations, as mentioned in Corollary 2.10:

Dj1 ⊗Dj2 =
⊕

j

Dj .

Our task is to determine exactly which irreducible representations Dj will
sum up to give the tensor product Dj1 ⊗Dj2 . We will do this for SU(2) and
SO(3).

70
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Theorem 5.1 The tensor product of two irreducible representations Dj1 and
Dj2 of SU(2) and (if j1, j2 ∈ N), SO(3) has the following decomposition

Dj1 ⊗Dj2 =

j1+j2⊕
j=|j1−j2|

Dj

This is called the Clebsch-Gordan series.

Proof: See Jones §6.2.
Examples:

D
1
2 ⊗D

1
2 =

1⊕
j=0

Dj = D1 ⊕D0

D1 ⊗D
1
2 =

3
2⊕

j= 1
2

Dj = D
3
2 ⊕D

1
2

D5 ⊗D2 =
7⊕

j=3

Dj = D7 ⊕D6 ⊕D5 ⊕D4 ⊕D3

Tensor Product of Lie-Algebra Representations

Let L1,L2 be irreducible representations of g, the Lie-algebra corresponding
to G. Since Lj are given by differentiation around t = 0, Theorem (5.1) gives

(
L1 ⊗ 1

)
⊕

(
1⊗ L2

)
=

j1+j2⊕
j=|j1−j2

Lj .

We see that for Lie-algebra representations, it is (L1 ⊗ 1)⊕(1⊗ L2), and not
L1 ⊗ L2, that reduces into a direct sum of irreducible representations Lj.
For example, consider a system of two non-interacting particles with spins s1

and s2. The total spin operator Ŝ is given by the representation D of su(2)
in the following way:

Ŝ =
(
Ŝ1 ⊗ 1

)
⊕

(
1⊗ Ŝ2

)
= (i~Ds1(sn)⊗ 1)⊕ (1⊗ i~Ds2(sn))

= i~
s1+s2⊕

s=|s1−s2|

Ds(sn)

For the special case of two spin-1
2

particles, the total spin operator is given
by

Ŝ = i~
(
D0 ⊕D1

)
(sn) .
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Clebsch-Gordan Coefficients

Although we can “reduce” Dj1 ⊗ Dj2 into irreducible components
⊕

Dj, we
still need to find an appropriate basis if we want to express these matrices
into the block-diagonal form given in Theorem 2.2.
We start with the basis of eigenvectors

|j1m1j2m2〉 ≡ |j1m1〉 ⊗ |j2m2〉 ,

which span H. The operators

(Ĵ1)
2, (Ĵ2)

2, (Ĵ)2, (Ĵ)3

form a complete system of commuting observables. Therefore, H can be
spanned by a basis of common eigenvectors

|j1j2jm〉 .

In order to determine the new basis {|j1m1j2m2〉}, we express it in terms of
the old basis {|j1j2jm〉}:

Theorem 5.2 The two bases {|j1m1j2m2〉} and {|j1j2jm〉} are related by

|j1j2jm〉 =

j1∑
m1=−j1

j2∑
m2=−j2

c(j1, j2, j,m1,m2,m) |j1m1j2m2〉

where c(j1, j2, j,m1,m2,m) ∈ R are called the Clebsch-Gordan coeffi-
cients.

These coefficients can either be calculated as in the following example, or
looked up in a table.

Example: Two Particles of spin 1
2

The components of the total spin operator are given by

(Ŝ)i = i~(D
1
2 ⊗D

1
2 )(si) = i~(D1 ⊕D0)(si) .

Given the old basis ∣∣1
2

1
2

1
2

1
2

〉
≡ |++〉∣∣1

2
1
2

1
2
− 1

2

〉
≡ |+−〉∣∣1

2
− 1

2
1
2

1
2

〉
≡ |−+〉∣∣1

2
− 1

2
1
2
− 1

2

〉
≡ |−−〉 ,
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⊗ = ⊕
|+�

|−�

D
1
2

|+�

|−�

D
1
2

|1 1�

|1 0�

|1 − 1�

D1

|0 0〉

D0

Figure 5.1: The representations D
1
2⊗D

1
2 and D1⊕D0 on the four-dimensional

spinor space

we’d like to find a new basis ∣∣1
2

1
2
11

〉
≡ |1 1〉∣∣1

2
1
2
10

〉
≡ |1 0〉∣∣1

2
1
2
1− 1

〉
≡ |1 − 1〉∣∣1

2
1
2
00

〉
≡ |0 0〉 .

We start with the highest-weight vector

|++〉 = |1+〉

and climb down using the ladder operators Ŝ−, (Ŝ1)−, and (Ŝ2)−:

Ŝ− |s1s2sm〉 =
√
s(s+ 1)−m(m− 1) |s1s2s(m− 1)〉

(Ŝ1)− |s1m1s2m2〉 =
√
s1(s1 + 1)−m1(m1 − 1) |s1(m1 − 1)s2m2〉

(Ŝ2)− |s1m1s2m2〉 =
√
s2(s2 + 1)−m2(m2 − 1) |s1m1s2(m2 − 1)〉 .

We first calculate |1 0〉 by operation of Ŝ−

Ŝ− |1 1〉 = (Ŝ1− + Ŝ2−) |++〉
√

2 |1 0〉 = 1 · |−+〉+ 1 · |+−〉
|1 0〉 = 1√

2
|−+〉+ 1√

2
|+−〉 .

Further operation of Ŝ− gives us |1 − 1〉

Ŝ− |1 0〉 = 1√
2
(Ŝ1− + Ŝ2−) |−+〉+ 1√

2
(Ŝ1− + Ŝ2−) |+−〉

|0 − 1〉 = 0 + 1√
2
|−−〉+ 1√

2
|−−〉+ 0

|1− 1〉 = |−−〉 .
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As for |0 0〉, we know that it must be a linear combination of the old basis:

|0 0〉 = A |++〉+B |+−〉+ C |−+〉+D |−−〉 .

We just need to solve for A,B,C,D. Applying Ŝ2
+ and Ŝ2

− gives

Ŝ2
+ |0 0〉 = 0 = 2A |++〉 ⇒ A = 0

Ŝ2
− |0 0〉 = 0 = 2D |−−〉 ⇒ D = 0 .

Applying Ŝ− to |0 0〉 gives

Ŝ− |0 0〉 = 0 = (B + C) |0 0〉 ⇒ ±B = ∓C .

Taking the norm of |0 0〉 gives

1 = B2 + C2 ⇒ |B| = |C| = 1√
2
.

In accordance with the Condon-Shortley convention (c.f. Cornwell, §12.5)
we choose

B = 1√
2

C = − 1√
2
.

Thus, we can now fully express the new basis |j1j2jm〉 in terms of the old
basis |j1m1j2m2〉

|1 1〉 = |++〉
|1 0〉 = 1√

2
|+−〉+ 1√

2
|−+〉

|1 − 1〉 = |−−〉
|0 0〉 = 1√

2
|+−〉 − 1√

2
|−+〉 .

Notice that the coefficients of these linear combinations match up with the
values found in the table of Clebsch-Gordan coefficients for 1

2
⊗ 1

2
. See Table

12.1 of Cornwell for some simple tables of Clebsch-Gordan coefficients.



Chapter 6

The Hidden Symmetry of the
Hydrogen Atom

In this chapter, we briefly consider the hydrogen atom. Recall that a rota-
tionally symmetric potential V (r) allows us to split up L2(R3), dµ into radial
and angular components ψ = f ⊗ φ and that the radial part can be solved
by the Hamilton operator

Ĥf = Ef .

Now consider the special case of the Coulomb potential for the hydrogen
atom

V (r) = −e
2

r
Ĥ =

p̂2

2µ
− e2

r
.

This potential is said to possess some “hidden” symmetry, which we’ll soon
see. First, consider the operator

B̂ =
1

2e2µ

(
L̂× p̂− p̂× L̂

)
+

r̂

r
,

which is the quantum-mechanical version of the Lenz-Runge vector, which is
conserved under a 1

r
potential. Now consider a bound state E < 0, and the

reduced Lenz-Runge operator

Â =

√
−µe

4

2E
B̂ ≡

√
− γ

E
B̂ ,

75
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where γ ≡ µe4

2
. We then have the following commutation relations:[

L̂i, L̂j

]
= i~εijkL̂k[

Âi, Âj

]
= i~εijkÂk[

Âi, L̂j

]
= i~εijkL̂k .

The second equation shows us that the vector operator Â fulfills the condition
of a general angular momentum operator, and thus a vector operator

Ŷ =
1

i~
Â

generates an su(2) Lie algebra[
Ŷi, Ŷj

]
= εijkŶk

in the same way that X̂ = 1
i~L̂ does. In fact, if we now consider the operators

M̂ ≡ 1

2
(L̂ + Â) N̂ =

1

2
(L̂ + Â) ,

we end up with the commutation relations[
M̂i, M̂j

]
= i~εijkM̂k[

N̂i, N̂j

]
= i~εijkN̂k[

M̂i, N̂j

]
= 0

.

Wee see that M̂ and N̂ fulfill the condition of a general angular momentum
operator—even though their physical meaning is not evident. And because
they commute (unlike Â and L̂), they form a direct sum of two independent
su(2) algebras

su(2)⊕ su(2) .

Theorem 6.1 We have

su(2)⊕ su(2) ∼= so(4) .
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Proof: Cornwell, Appendix G, Section 2b
Thus, the Lie algebra of the hydrogen atom is so(4), whose corresponding
Lie group is SO(4), the group of proper rotations in four dimensions. While
the Lie group SO(3) expresses the symmetry of a system with a rotationally
invariant potential V (r), the special case of a 1

r
-potential provides an extra

“accidental” symmetry, which can only be explained by considering the Lie
group SO(4). Notice that we have arrived at the group SO(4) indirectly, that
is, through its Lie algebra so(4). A more direct approach without taking this
Lie-algebra “shortcut” would be quite difficult to grasp—imagine having to
visualize a four-dimensional rotation!

The Quantum Number n

The operators Ĥ, M̂
2
, M̂3, N̂

2
, N̂3 form a system of commuting ovesrvables,

and we have eigenvectors

|E α mα β mβ〉 ≡ |E〉 .

Notice that this is an irreducible basis for a (2α + 1)(2β + 1)-dimensional
representation of so(4). Also notice that α, β = 0, 1

2
, 1, . . . act as a kind of

spin number as in Theorem 4.1. The Casimir operators give us

M̂
2
|E〉 = ~2α(α+ 1) |E〉

N̂
2
|E〉 = ~2β(β + 1) |E〉 .

Using the identity
Â · L̂ = 0 ,

we have

M̂
2

= N̂
2

=
1

4

(
Â

2
+ L̂

2
)
,

which, when applied to |E〉, gives us

α = β .

Using the identity

B̂
2

= 1+
2

µe4
Ĥ

(
L̂

2
+ ~2

1

)
Â

2
= − γ

E
1− Ĥ

E

(
L̂

2
+ ~1

)
,
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we have

4M̂
2

= Â
2
+ L̂

2

= − γ

E
1− Ĥ

E
L̂

2
− ~

Ĥ

E
1+ L̂

2
.

Applying this to |E〉 gives

4~2α(α+ 1) = −~2 − γ

E
= −~2 − µe4

2E

E = − µe4

2~2(2α+ 1)2
.

Defining n ≡ 2α+1 = 1, 2, 3, . . . gives us the well-known result for the energy
levels of the hydrogen atom:

En = − µe4

2~2n2
.

The Quantum Number l

The eigenvector of fixed energy En form a basis for a (2α + 1)(2β + 1) =
(2α + 1)2 = n2-dimensional irreducible representation of so(4). Notice that
this corresponds to the n2 degeneracy of the energy levels of the hydrogen
atom.
Going back to the defining equations of M̂ and N̂, we see that

L̂ = M̂ + N̂ ,

or in other words, L̂ is the sum of independent angular momenta, which
corresponds to the tensor product of representations Dα and Dβ = Dα:

Dα ⊗Dα =
2α⊕
l=0

Dl = Dn−1 ⊕ · · · ⊕D0 .

That is, the quantum number l takes on the well-known values

l = n− 1, n− 2, . . . , 1, 0 .
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